一致性哈希(Consistent Hash)】的更多相关文章

Nginx版本:1.9.1 我的博客:http://blog.csdn.net/zhangskd 算法介绍 当后端是缓存服务器时,经常使用一致性哈希算法来进行负载均衡. 使用一致性哈希的好处在于,增减集群的缓存服务器时,只有少量的缓存会失效,回源量较小. 在nginx+ats / haproxy+squid等CDN架构中,nginx/haproxy所使用的负载均衡算法便是一致性哈希. 我们举个例子来说明一致性哈希的好处. 假设后端集群包含三台缓存服务器,A.B.C. 请求r1.r2落在A上. 请…
转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和Java实现,以及效果测试. 背景介绍 一致性Hashing在分布式系统中经常会被用到, 用于尽可能地降低节点变动带来的数据迁移开销.Consistent Hashing算法在1997年就在论文Consistenthashing and random trees中被提出. 先来简单理解下Hash是解决…
文章同步发表在博主的网站朗度云,传输门:http://www.wolfbe.com/detail/201608/341.html 1.背景        我们都知道memcached服务器是不提供分布式功能的,memcached的分布式完全是由客户端来实现的.在部署memcached服务器集群时,我们需要把缓存请求尽可能分散到不同的缓存服务器中,这样可以使得所有的缓存空间都得到利用,而且可以降低单独一台缓存服务器的压力.     最简单的一种实现是,缓存请求时通过计算key的哈希值,取模后映射到…
KV集群的请求分发 假定N为后台服务节点数,当前台携带关键字key发起请求时,我们通常将key进行hash后采用模运算 hash(key)%N 来将请求分发到不同的节点上, 后台节点的增删会引起几乎所有key的重新映射, 这样会造成大量的数据迁移,如果数据量大的话会导致服务不可用. 一致性哈希机制 我倾向于称之为一致性哈希机制而不是算法, 因为这其实和算法没太大关系. 设计这种机制的目的是当节点增减时尽量减小重新映射的key的数量, 尽量将key还映射到原来的节点上. 而对于一致性哈希机制, 如…
笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向:Flume+Kafka+Storm+Redis/Hbase+Hadoop+Hive+Mahout+Spark ... 云计算技术 转载声明:能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明,谢谢合作. qq交流群:214293307  idkey=bf80524ac3630cb09…
最近在研究"一致性HASH算法"(Consistent Hashing),用于解决memcached集群中当服务器出现增减变动时对散列值的影响.后来 在JAVAEYE上的一篇文章中,找到了其中的 KetamaHash 算法的JAVA实现(一种基于虚拟结点的HASH算法),于是为了加深理解,对照 JAVA版本,用C#重写了一个.放到这里,如果大家感兴趣的话, 可以下载测试一下,如果发现写法有问题请及时告之我,以便我及时修正.        下面是对Ketama的介绍:  Ketama i…
http://blog.csdn.net/cywosp/article/details/23397179/ http://www.codeproject.com/Articles/56138/Consistent-hashing http://www.cnblogs.com/daizhj/archive/2010/08/24/1807324.html http://www.tuicool.com/articles/2ueyYf      一致性Hash算法在Redis的使用 http://blo…
一.产生背景 今天咱不去长篇大论特别详细地讲解consistent hash,我争取用最轻松的方式告诉你consistent hash算法是什么,如果需要深入,Google一下~. 举个栗子吧: 比如有 N 个 cache 服务器,需要将一个object 映射到 N 个 cache 上,我们可以用类似下面的方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache 上: hash(object)%N 比如object是“hello”,hash(object)是100,N为3…
    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用.        一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:   1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到…
一.算法背景 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用. 二.应用场景 现在一致性hash算法在分布式系统中也得到了广泛应用,分布式系统中涉及到集群部署,包括缓存Redis集群,数据库集群,我们在使用Redis的时候,为了保证Redis的高可用,提高Redis的读写性能,最…