Min25 筛学习笔记】的更多相关文章

最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
min25筛简介:用来求积性函数F(x)前缀和的,复杂度O(n0.75/logn),大概能求n<=1010. 记一个数x的最小质因子为R(x),所以当x不为质数时,R(x)<=√x这是废话. 首先求所有质数的F(x)和,下设g(i,j)=ΣF(x),其中2<=x<=i,且x为质数或R(x)>pri[j],其中pri[j]为第j个质数.其实,j的取值至多√n个显而易见,下面可以发现最终状态是g(i,tot),其中tot为√n以内的质数个数.初始化g(i,0),即将所有数视为质数…
仅仅是 \(min25\) 筛最基本的方法,没有任何推式子的例题.(想了想还是加两道吧qwq) 这里解决的是 \(Luogu\) 那道模板题. min25 基本方法: 最基础的是两个式子: \[G(n,m): 所有合数 \space x \le n \space 的最小质因子 > pri_m 的 \space p^k 和或者是质数 \space x \le n \space 的\space p^k 的和.\\ G(n,m) = G(n,m - 1) - pri_m^k \times (G(\fr…
Min_25筛简介 \(\text{min_25}\)筛是一种处理一类积性函数前缀和的算法. 其中这类函数\(f(x)\)要满足\(\sum_{i=1}^{n}[i\in prime]\cdot f(i)\)可以被\(\sum_{i=1}^{n}[i\in prime]\cdot i^k\)简单表示或者快速计算,其中\(k\)为较小的常数. 时间复杂度好像是\(O(\frac{n^{0.75}}{\log n})\),不过据说被证伪了...也有人说是\(O(n^{1-\epsilon})\),反…
这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/9187319.html 首先计算\[g(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子严格大于P_j\\g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j…
\(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指质数集合,\(p_i\)或\(p\)指某个具体质数. 求一类积性函数\(f(x)\)的前缀和,需要满足\(f(p)\)可以写成多项式的形式,或者操作一下可以写成多项式(如例题),且\(f(p^k)\)能快速求出. 讲真学这个东西比我什么都不会的时候学\(FFT\)都累. Round 1 先求质数的贡…
Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) 的定义是每个质因子次数都 \(\ge 2\) 的数. 有如下的性质: \(1\).一个 \(Powerful\ number\) 一定可以表示为 \(a^2b^3\) 的形式. \(2\).\(n\) 以内的 \(Powerful\ number\) 个数是 \(O(\sqrt n)\) 级别的.…
前言 杜教筛学了,顺便把min25筛也学了吧= =刚好多校也有一道题需要补. 下面推荐几篇博客,我之后写一点自己的理解就是了. 传送门1 传送门2 传送门3 这几篇写得都还是挺好的,接下来我就写下自己对min25筛的理解吧 . 正文 简介: min25筛同杜教筛类似,是用来解决一类积性函数的前缀和,即\(\sum_{i=1}^nF(i)\),并且这里的\(n\)可以达到\(10^{10}\)的规模. 但所求积性函数要求满足以下条件: \(F(p)\)可以表示为简单多项式的形式,比如\(p_1^{…
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = \sum_{i = 1}^{\sqrt{n}}F(i) \left(\sum_{\sqrt{n} < p\leqslant n/i, p\ is\ a\ prime} F(p) \right) + \sum_{i = 1, i\ has\ no\ prime\ factor\ greater\ th…
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 筛 3. 模板题以及模板代码 问题模型 有一个积性函数 $f$ ,对于所有质数 $p$,$f(p)$ 是关于 $p$ 的多项式,$f(p^k)$ 非常容易计算(不一定是关于 p 的多项式). 求 $$\sum_{i=1}^{n} f(i)$$ $n\leq 10^{10}$ ${\rm Time\…