LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私聊讨论吧. 从本篇博客开始,本人将转化写作模式,由话痨模式转为极简模式,力求三言两语让各位看的明白. 2 工作简介 受到MOCO和SimCSE的启发, 基于自监督,使用海量无监督数据(nlp_chinese_corpus),预训练了一个专门用于短文本表征的编码器.该编码器在分类任务尤其是短文本相似度…
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独下载的文件. 2.使用预训练的模型提取特征 打开test_vgg16.py,做如下修改: import numpy as np import tensorflow as tf import vgg16 import utils img1 = utils.load_image("./test_data…
我们如今開始训练模型,还输入參数例如以下: rank:ALS中因子的个数.通常来说越大越好,可是对内存占用率有直接影响,通常rank在10到200之间. iterations:迭代次数,每次迭代都会降低ALS的重构误差.在几次迭代之后,ALS模型都会收敛得到一个不错的结果,所以大多情况下不须要太多的迭代(一般是10次). lambda:模型的正则化參数,控制着避免过度拟合.值越大,越正则化. 我们将使用50个因子,8次迭代,正则化參数0.01来训练模型: val model = ALS.trai…
原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到…
http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到翻阅了深度…
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embedding到BERT - 二十三岁的有德 目录 一.预训练 1.1 图像领域的预训练 1.2 预训练的思想 二.语言模型 2.1 统计语言模型 神经网络语言模型 三.词向量 3.1 独热(Onehot)编码 3.2 Word Embedding 四.Word2Vec 模型 五.自然语言处理的预训练模型 六…
如我们有一个分类任务,数据库很小,这时还是需要通过预训练来避免深度模型的过拟合问题的,只不过预训练是通过在一个大的数据库上(比如imagenet),通过有监督的训练来完成的.这种有监督预训练加小的数据库上微调的模式称为Transfer learning. R-CNN是大样本下有监督预训练 + 小样本微调的方式,解决了小样本难以训练甚至过拟合的问题. 速度:经典的目标检测算法使用滑动窗法依次判断所有可能的区域.R-CNN预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…