说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图是一个人工神经元的模型: (…
本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例…
转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图…
首先我们来简单的了解一下什么是卷积神经网路(Convolutional Neural Network) 卷积神经网络是近些年逐步兴起的一种人工神经网络结构, 因为利用卷积神经网络在图像和语音识别方面能够给出更优预测结果, 这一种技术也被广泛的传播可应用. 卷积神经网络最常被应用的方面是计 算机的图像识别, 不过因为不断地创新, 它也被应用在视频分析, 自然语言处理, 药物发现, 等等. 卷积也就是说神经网络不再是对每个像素的输入信息做处理了,而是图片上的每一个小块像素区域进行处理,这种做法加强了…
算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout…
在http://blog.csdn.net/fengbingchun/article/details/50814710中给出了CNN的简单实现,这里对每一步的实现作个说明: 共7层:依次为输入层.C1层.S2层.C3层.S4层.C5层.输出层.C代表卷积层(特征提取).S代表降採样层或池化层(Pooling),输出层为全连接层. 1.        各层权值.偏置(阈值)初始化: 各层权值.偏置个数计算例如以下: (1).输入层:预处理后的32*32图像数据.无权值和偏置: (2).C1层:卷积…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建,其它步骤都和前面介绍的普通神经网络的处理完全一致,本文就不重复介绍了,重点讲一下模型的构建. 先看代码: /// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 float scale =…
"如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手写数字识别的程序,通过一个简单的两层神经网络,就轻松获得了98%的识别成功率.这个成功率不代表你的网络是有效的,因为MNIST实在是太简单了,我们需要更复杂的数据集来检验网络的有效性!这就有了Fashion-MNIST数据集,它采用10种服装的图片来取代数字0~9,除此之外,其图片大小.数量均和MNIST一致…
上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数. 我们假设只有一个输入.一个输出,神经网络模型结构类似上图,其中蓝色的路径仍为线性模型,红色路径为阶跃函数,是非线性模型. 以上模型只有三个神经元,设输入为x,隐藏层为h,激活函数输出为a,最终输出为y,整个数据计算流情况如下: 以上共有6+…
上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三个类别:偏瘦.正常.偏胖. 处理流程如下: 1.收集数据 2.构建神经网络 3.训练网络 4.保存和消费模型 详细步骤如下: 1.收集数据 对于一个复杂的业务数据,在实际应用时应该是通过收集取得数据,本文的重点不在数据收集,所以我们将制造一批标准数据来进行学习. 关于人体的胖瘦问题,有一个BMI算法…
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中. 程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元…
随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改,更换一个依赖库即可,程序是否能运行成功主要看环境是否安装正确,这篇文章重点介绍的也就是环境的安装了. CUDA和cuDNN的安装都比较容易,重点是要装对版本. 1.确认安装版本 首先电脑得有一块NVIDIA的显卡! 在桌面右键选择NVIDIA控制面板,在程序左下角点击 :系统信息. 首先要确认显卡…
这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前,我们先来看看怎样使用 Python 处理图片.Python 处理图片最主要使用的类库是 Pillow (Python2 PIL 的 fork),使用以下命令即可安装: pip3 install Pillow 一些简单操作的例子如下,如果你想了解更多可以参考 Pillow 的文档: # 打开图片 >>…
曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. 最近想从底层学习一下机器学习的相关知识,经过初步筛选,计划定位于python + pytorch这个方向入手,经过一段时间的学习,我发现由于对python语言不太熟悉,导致实践起来比较困难,先不说机器学习相关的代码,光周边代码就搞得焦头烂额了.想要下决心好好修炼一下python必然不是一朝一夕的事…
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下.首先介绍原理部分. [透析] 卷积神经网络CNN究竟是怎样一步一步工作的? 通过一个图像分类问题介绍卷积神经网络是如何工作的.下面是卷积神经网络判断一个图片是否包含"儿童"的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经网络(Fully-ConnectedNeural Network)计算.        首先将图片分割成如下图…
卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 它包括卷积层(convolutional layer)和池化层(pooling layer). ​ 卷积神经网络包括一维卷积神经网络.二维卷积神经网络以及三维卷积神经网络. ​ 一维卷积神经网络常应用于序列类的数据处理: ​ 二维卷积神…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
项目开发环境为Visual Studio 2019 + .Net 5 创建新项目后首先通过Nuget引入相关包: SciSharp.TensorFlow.Redist是Google提供的TensorFlow开发库,是采用C语言开发的动态链接库(DLL): TensorFlow.NET采用C#语言对C语言的库进行封装,提供.NET调用接口: TensorFlow.Keras是一个高级工具类,对建模和训练过程进行封装,提供简便接口. 通过下列语句对库进行引用: using Tensorflow; u…
回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种. 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值. 举个例子:快年底了,销售部门要发年终奖了,销售员小王想知道今年能拿多少年终奖,目前他大抵知道年终奖是和销售额(特征量)挂钩的,具体什么规则不清楚,那么他大概有两个方法解决这个问题: 1.去问老板,今年的分配规则是什么.[通过算法解决问题] 2.去向同事打听他们的销售额和奖金情况,然后推算自己能拿多少.[通过数据解决问题] 我们当然选择第二种…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构      • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer 1.数据输入层该层要…
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向…
转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢.例如一张黑白的28*28的手写数字图片时,输入层的神经元就是784个,如下图所示: 若在中间只使用一层隐藏层,参数w就有784*15=11760多个:若输入的是28*28带有颜色的RGB格式的手写数字图…
卷积神经网络(CNN,ConvNet) 卷积神经网络(CNN,有时被称为 ConvNet)是很吸引人的.在短时间内,变成了一种颠覆性的技术,打破了从文本.视频到语音等多个领域所有最先进的算法,远远超出了其最初在图像处理的应用范围. CNN 由许多神经网络层组成.卷积和池化这两种不同类型的层通常是交替的.网络中每个滤波器的深度从左到右增加.最后通常由一个或多个全连接的层组成: 图 1 卷积神经网络的一个例子 Convnets 背后有三个关键动机:局部感受野.共享权重和池化. 局部感受野 如果想保留…