翻译学长的一片论文:Long Short-Term Memory Neural Networks for Chinese Word Segmentation 传统的neural Model for Chinese Word  Segmentation 中文分词一般是基于字符的序列标签.每个字符可以被标记为集合{B, M, E, S}中的一个元素. B - Begin, M - Middle, E-End of a multi-character segmentation(多字符分割),S 代表…
http://blog.csdn.net/marising/article/details/5769653 前段时间写了中文分词的一些记录里面提到了CRF的分词方法,近段时间又研究了一下,特把方法写下来,以备忘,另外,李沫南同学优化过CRF++,见:http://www.coreseek.cn/opensource/CRF/.我觉得CRF++还有更大的优化空间,以后有时间再搞. 人民日报语料是分好词的,我下面贴出的代码就是把语料整理为CRF需要的训练数据,直接修改模板训练即可.不过有下面的同学给…
一.前言 之前做solr索引的时候就使用了ANSJ进行中文分词,用着挺好,然而当时没有写博客记录的习惯.最近又尝试了好几种JAVA下的中文分词库,个人感觉还是ANSJ好用,在这里简单总结之. 二.什么是中文分词 百度百科对其定义如下: 中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词.分词就是将连续的字序列按照一定的规范重新组合成词序列的过程.我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字.句和段能通过明显的分界…
SCWS 中文分词v1.2.3 开源免费的中文分词系统,PHP分词的上乘之选! 首页 下载 演示 文档 关于 服务&支持 API/HTTP 论坛 捐赠 源码@github 文档目录 SCWS-.x.x 安装说明 Libscws C-API 文档 SCWS-.x.x 命令行说明 SCWS 之 PHP 扩展文档 php_scws.dll/Win32 安装说明 PSCWS23 文档 PSCWS4 文档 词典词性标注详解 SCWS- 安装说明 以 Linux(FreeBSD) 操作系统为例 . 取得 s…
前言 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块.不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性.句法树等模块的效果.当然分词只是一个工具,场景不同,要求也不同.在人机自然语言交互中,成熟的中文分词算法能够达到更好的自然语言处理效果,帮助计算机理解复杂的中文语言.根据中文分词实现的原理和特点,可以分为: 基于词典分词算法 基于理解的分词方法 基于统计的机器学习算法 基于词典分词算法 基于词典分词算法,…
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断. 11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 /**  * 获取文本的所有分词结果, 对比不同分…
Xue & Shen '2003 [2]用两种序列标注模型--MEMM (Maximum Entropy Markov Model)与CRF (Conditional Random Field)--用于中文分词:看原论文感觉作者更像用的是maxent (Maximum Entropy) 模型而非MEMM.MEMM是由McCallum et al. '2000 [1]提出MEMM,针对于HMM的两个痛点:一是其为生成模型(generative model),二是不能使用更加复杂的feature.…
在前一篇中介绍了用HMM做中文分词,对于未登录词(out-of-vocabulary, OOV)有良好的识别效果,但是缺点也十分明显--对于词典中的(in-vocabulary, IV)词却未能很好地识别.主要是因为,HMM本质上是一个Bigram的语法模型,未能深层次地考虑上下文(context).对于此,本文将介绍更为复杂的二阶HMM以及开源实现. 1. 前言 n-gram语法模型 n-gram语法模型用来:在已知前面\(n-1\)个词\(w_1, \cdots, w_{n-1}\)的情况下…
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling problem),由此引入监督学习算法来解决分词问题. 1. HMM 首先,我们将简要地介绍HMM(主要参考了李航老师的<统计学习方法>).HMM包含如下的五元组: 状态值集合\(Q=\{q_1, q_2, \cdots, q_N\}\),其中\(N\)为可能的状态数: 观测值集合\(V=\{v_…
最近针对之前发表的一篇博文<Deep Learning 在中文分词和词性标注任务中的应用>中的算法做了一个实现,感觉效果还不错.本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的代码,也希望为对此感兴趣的朋友提供点参考.文中重点介绍训练算法中的模型参数计算,以及 Viterbi 解码算法. 相关链接: <Deep Learning 在中文分词和词性标注任务中的应用> <Deep Learning for Chinese Word Segmentation…
开源软件包 SENNA 和 word2vec 中都用到了词向量(distributed word representation),当时我就在想,对于我们的中文,是不是也类似地有字向量(distributed character representation)的概念呢? 最近恰好读到复旦大学郑骁庆博士等人的文章 [1]<Deep Learning for Chinese Word Segmentation and POS tagging>.这篇文章利用文 [3] 作者提出的神经网络框架,针对中文…
使用Python,字标注及最大熵法进行中文分词 在前面的博文中使用python实现了基于词典及匹配的中文分词,这里介绍另外一种方法, 这种方法基于字标注法,并且基于最大熵法,使用机器学习方法进行训练,将训练出的模型 用于中文分词,效果优于基于词典及匹配的分词方法. Table of Contents 1 背景知识 2 分词思想 2.1 以字分词 2.2 机器学习 3 实验及代码 3.1 数据来源 3.2 各部分数据示例 3.3 各部分代码示例 1 背景知识 2002年以前,自动分词方法基本上基于…
SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统).1.下载scws官方提供的类(这里使用的是pscws第四版的)http://www.xunsearch.com/scws/down/pscws4-20081221.tar.bz2下载XDB 词典文件 (这里使用的是utf8简体中文词典包)http://www.xunsearch.com/scws/down/scws-dict-chs-utf8.tar.bz22.解压scws类Ps…
THULAC是一款相当不错的中文分词工具,准确率高.分词速度蛮快的:并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等. 1. 前言 THULAC所采用的分词模型为结构化感知器(Structured Perceptron, SP),属于两种CWS模型中的Character-Based Model,将中文分词看作为一个序列标注问题:对于字符序列\(C=c_1^n\),找出最有可能的标注序列\(Y=y_1^n\).定义score函数\(S(…
CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer (NER)).情感分析(sentiment analysis)等功能. 1. 前言 CoreNLP也有中文分词,基于CRF模型: \[ P_w(y|x) = \frac{exp \left( \sum_i w_i f_i(x,y) \right)}{Z_w(x)} \] 其中,\(Z_w(x)\)为…
中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词. 分词模块jieba,它是python比较好用的分词模块.待分词的字符串可以是 unicode 或 UTF-8 字符串.GBK 字符串.注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 支持三种分词模式 1 精确模式,试图将句子最精确地切开,适合文本分析: 2 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 3 搜索引擎模式,在精…
pkuseg简单易用,支持细分领域分词,有效提升了分词准确度. 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 相关论文 作者 常见问题及解答 主要亮点 pkuseg具有如下几个特点: 多领域分词.不同于以往的通用中文分词工具,此工具包同时致力于为不同领域的数据提供个性化的预训练模型.根据待分词文本的领域特点,用户可以自由地选择不同的模型. 我们目前支持了新闻领域,网络领域,医药领域,旅游领域,以及混合领域的分词预训练模型.在使用中,如果用户明确待分词的领域,可加载对应的模型进行…
CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer (NER)).情感分析(sentiment analysis)等功能. [开源中文分词工具探析]系列: 开源中文分词工具探析(一):ICTCLAS (NLPIR) 开源中文分词工具探析(二):Jieba 开源中文分词工具探析(三):Ansj 开源中文分词工具探析(四):THULAC 开源中文分词工具…
http://blog.csdn.net/guixunlong/article/details/8925990 从头开始编写基于隐含马尔可夫模型HMM的中文分词器之一 - 资源篇 首先感谢52nlp的系列博文(http://www.52nlp.cn/),提供了自然语言处理的系列学习文章,让我学习到了如何实现一个基于隐含马尔可夫模型HMM的中文分词器. 在编写一个中文分词器前,第一步是需要找到一些基础的词典库等资源,用以训练模型参数,并进行后续的结果评测,这里直接转述52nlp介绍的“中文分词入门…
一.SCWS了解一下: SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统). 这是一套基于词频词典的机械式中文分词引擎,它能将一整段的中文文本基本正确地切分成词. 词是中文的最小语素单位,但在书写时并不像英语会在词之间用空格分开, 所以如何准确并快速分词一直是中文分词的攻关难点. SCWS 采用纯 C 语言开发,不依赖任何外部库函数,可直接使用动态链接库嵌入应用程序, 支持的中文编码包括 GBK.UTF-8 等.此外还提供了 PH…
1.scws简单介绍 SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统). 这是一套基于词频词典的机械式中文分词引擎,它能将一整段的中文文本基本正确地切分成词. 词是中文的最小语素单位,但在书写时并不像英语会在词之间用空格分开. 所以怎样准确并高速分词一直是中文分词的攻关难点. SCWS 採用纯 C 语言开发,不依赖不论什么外部库函数.可直接使用动态链接库嵌入应用程序, 支持的中文编码包含 GBK.UTF-8 等. 此外还提供了…
概述   本文都是基于elasticsearch安装教程 中的elasticsearch安装目录(/opt/environment/elasticsearch-6.4.0)为范例 环境准备 ·全新最小化安装的centos 7.5 ·elasticsearch 6.4.0 认识中文分词器 在博文elasticsearch分词器中提到elasticsearch能够快速的通过搜索词检索出对应的文章归功于倒排索引,下面通过中文举例看看倒排索引. 中文分词器作用以及效果 中文分词器是做什么的呢? what…
分词技术就是搜索引擎针对用户提交查询的关键词串进行的查询处理后根据用户的关键词串用各种匹配方法进行分词的一种技术. 中文分词(Chinese Word Segmentation)指的是将一个汉字序列(句子)切分成一个一个的单独的词,分词就是将连续的字序列按照一定的规则重新组合成词序列的过程. 现在分词方法大致有三种:基于字符串配置的分词方法.基于理解的分词方法和基于统计的分词方法. 今天为大家分享一个国内使用人数最多的中文分词工具GoJieba,源代码地址:GoJieba ,官方文档:GoJie…
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术.在其中,分词技术是一种比较基础的模块.对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来.而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来.分词的意义非常大,在中文中,单字作为最基本的语义单位…
(标题长一点就能让外行人感觉到高大上) 直接切入主题好了,这个比赛还必须一个神经网络才可以 所以我们结合主题,打算写一个神经网络的中文分词 这里主要写一下数据的收集和处理,网络的设计,代码的编写和模型测试 数据问题 这个模型的数据,我们打算分三类来: 用msr, pku, as, cityu的语料作数据 这些是人工分词的数据,作为数据是最合适的 虽然数据量确实不小(共158999行),但我们有几个另外的想法 用已有的多个中文分词工具,对小说.新闻.法律等进行分词,作为数据 很多分词工具的分词结果…
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebos.com/cips2016.pdf 之前写过一篇中文分词总结,那么在那篇基础上,通过在CIPS2016的摘录进行一些拓展.可参考上篇:NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与比较 NLP词法.句法.语义.语篇综合系列: NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与…
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以人类自然语言为载体的文本所包含的信息,并完成一些特定任务 内容中文分词.词性标注.命名实体识别.关系抽取.关键词提取.信息抽取.依存分析.词嵌入…… 应用篇章理解.文本摘要.情感分析.知识图谱.文本翻译.问答系统.聊天机器人…… 2. NLP 使用jieba分词处理文本,中文分词,关键词提取,词性标…
R语言中文分词包jiebaR R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网-.都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域…
常用技能(更新ing):http://www.cnblogs.com/dunitian/p/4822808.html#skill 技能总纲(更新ing):http://www.cnblogs.com/dunitian/p/5493793.html 在线演示:http://cppjieba-webdemo.herokuapp.com 完整demo:https://github.com/dunitian/TempCode/tree/master/2016-09-05 逆天修改版:https://gi…
1. 前言 Jieba是由fxsjy大神开源的一款中文分词工具,一款属于工业界的分词工具--模型易用简单.代码清晰可读,推荐有志学习NLP或Python的读一下源码.与采用分词模型Bigram + HMM 的ICTCLAS 相类似,Jieba采用的是Unigram + HMM.Unigram假设每个词相互独立,则分词组合的联合概率: \begin{equation} P(c_1^n) = P(w_1^m) = \prod_i P(w_{i}) \label{eq:unigram} \end{eq…