机器学习-分类器-Adaboost原理】的更多相关文章

Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器.adaboost算法训练的过程中,初始化所有训练样例的具有相同的权值重,在此样本分布下训练出一个弱分类器,针对错分样本加大对其对应的权值,分类正确的样本降低其权值,使前一步被错分的样本得到突显,获得新的样本分布,在新的样本分布下,再次对样本进行训练,又得到一个分类器.依次循环,得到T个分类器,将这些分类器按照一定的权值组合,得到最终的强…
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 Adaboost体现的是“三个臭皮匠,胜过一个诸葛亮”,它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), 然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).训练过程如下(参考Andy的机器学习--浅析Adaboost算法,他说得非常形象,贴切.) 简单的…
集成学习大致可分为两大类:Bagging和Boosting.Bagging一般使用强学习器,其个体学习器之间不存在强依赖关系,容易并行.Boosting则使用弱分类器,其个体学习器之间存在强依赖关系,是一种序列化方法.Bagging主要关注降低方差,而Boosting主要关注降低偏差.Boosting是一族算法,其主要目标为将弱学习器"提升"为强学习器,大部分Boosting算法都是根据前一个学习器的训练效果对样本分布进行调整,再根据新的样本分布训练下一个学习器,如此迭代M次,最后将一…
写一点自己理解的AdaBoost,然后再贴上面试过程中被问到的相关问题.按照以下目录展开. 当然,也可以去我的博客上看 Boosting提升算法 AdaBoost 原理理解 实例 算法流程 公式推导 面经 Boosting提升算法 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.在说AdaBoost之前,先说说Boosting提升算法.Boosting算法是将“弱学习算法“提升为“强学习算法”的过程,主要思想是“三个臭皮匠顶个诸葛亮”.一般来说,找到弱学习算法要相对…
Adaboost原理及目标检测中的应用 whowhoha@outlook.com Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器.adaboost算法训练的过程中,初始化所有训练样例的具有相同的权值重,在此样本分布下训练出一个弱分类器,针对错分样本加大对其对应的权值,分类正确的样本降低其权值,使前一步被错分的样本得到突显,获得新的样本分布,在新的样本分布下,再次对样本进行训练,又得到…
本章内容 组合类似的分类器来提高分类性能 应用AdaBoost算法 处理非均衡分类问题 主题:利用AdaBoost元算法提高分类性能 1.基于数据集多重抽样的分类器 - AdaBoost 长处 泛化错误率低,易编码,能够应用在大部分分类器上,无需參数调整 缺点 对离群点敏感 适合数据类型 数值型和标称型数据 bagging:基于数据随机重抽样的分类器构建方法 自举汇聚法(bootstrap aggregating),也称为bagging方法,是从原始数据集选择S次后得到S个新数据集的一种技术.…
提升的概念 提升是一个机器学习技术,可以用于回归和分类问题,它每一步产生一个弱预测模型(如决策树),并加权累加到总模型中:如果每一步的弱预测模型生成都是依据损失函数的梯度方向,则称之为梯度提升(Gradient boosting) 梯度提升算法首先给定一个目标损失函数,它的定义域是所有可行的若函数集合(基函数):提升算法通过迭代的选择一个负梯度方向上的基函数来逐渐逼近局部极小值.这种在函数域的梯度提升观点对机器学习的很多领域有深刻的影响. 提升的理论意义:如果一个问题存在弱分类器,则可以通过提升…
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器.对adaBoost算法的研究以及应用大多集中于分类问题,同时也出现了一些在回归问题上的应用.就其应用ad…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预测.机器学习特别有价值,因为它让我们可以使用计算机来自动化决策过程. 在本教程中,您将使用Scikit-learn(Python的机器学习工具)在Python中实现一个简单的机器学习算法.您将使用Naive Bayes(NB)分类器,结合乳腺癌肿瘤信息数据库,预测肿瘤是恶性还是良性. 在本教程结束时…
客户续费模型  逻辑回归 分类器  AdaBoost…