zaish上一节讲了线性回归中L2范数的应用,这里继续logistic回归L2范数的应用. 先说一下问题:有一堆二维数据点,这些点的标记有的是1,有的是0.我们的任务就是制作一个分界面区分出来这些点.如图(标记是1的样本用+表示,0的用红点表示): 这其实是一个二分类问题,然后我们就想到了logistic回归模型.这是一个概率模型, 即预测在x已知时,标记为1的概率:那么标记为0的概率为:. 那么分别根据每个样本的标记y是1还是0分别带入到每个概率模型(每个样本只带入一个模型,而不是两个都带入)…
一.感知机     详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 二.线性回归      1.定义及解析解: a=(XTX) -1 XTy,如加2范数约束则解析解为a=(XTX+λI) -1 XTy     2.总结: 速度快,对异常值敏感.可以采用梯度下降法. 三.逻辑斯蒂回归 1.sigmod: 见 https://www.cnblogs.com/Esther…
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ ) 回想…
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST…
Softmax回归是Logistic回归在多分类问题上的推广,是有监督的. 回归的假设函数(hypothesis function)为,我们将训练模型参数,使其能够最小化代价函数: 在Softmax回归中,我们解决的是多分类问题,类标y可以取k个不同的值.对于给定的测试输入x,我们想用假设函数针对每一个类别j估算出概率值.也就是说,我们想估计x的每一种分类结果的概率.因此,我们的假设函数将要输出一个k维的向量(向量元素的和为1)来表示这k个估计的概率值.具体地说,我们的假设函数形式如下: 其中,…
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ …
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softmax 回归 vs. k 个二元分类器 7 中英文对照 8 中文译者 转自:http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上…
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIS…
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutorial/logreg.html 起源:Logistic的二类分类 Softmax回归是Logistic回归的泛化版本,用于解决线性多类(K类)的分类问题. Logistic回归可以看作是Softmax回归在K=2时的特例.Softmax函数即是K分类版的Logistc函数. 裸Softmax回归的效…
Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试输入,我们相拥假设函数针对每一个类别j估算出概率值.也就是说,我们估计得每一种分类结果出现的概率.因此我们的假设函数将要输入一个维的向量来表示这个估计得概率值.假设函数形式如下: 其中是模型的参数.这一项对概率分布进行归一化,舍得所有概率之和为1. softmax回归的代价函数: 上述公式是logi…