hermite矩阵】的更多相关文章

2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵 看文献的时候,经常见到各种各样矩阵,本篇总结了常见的对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵七种矩阵的定义,作为概念备忘录吧,忘了可以随时查一下. 1.对称矩阵(文献[1]第40页) 其中上标T表示求矩阵的转置(文献[1]第3…
将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论.   Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩阵之和,要么与加边的 Hermite 矩阵有关.     定理1(Weyl): 设 \(A,B \in M_n\) 是 Hermite 矩阵,又设 \(A,B\) 以及 \(A+B\) 各自的特征值分别是 \(\{\lambda_i(A)\}_{i=1}^n, \{\lambda_i(B)\}_{i…
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次型.   基本概念   定义1: 矩阵 \(A=[a_{ij}] \in M_n\) 称为 Hermite 的,如果 \(A=A^*\):它是斜 Hermite 的,如果 \(A=-A^*\). 对于 \(A,B \in M_n\),可得出很多简单明了的结论:   (1) \(A+A^*\), \(…
1.对称矩阵 2.Hermite矩阵 3.正交矩阵 4.酉矩阵…
在读线代书.因为之前并没有上过线性代数的课.所以决定把基础打牢牢. 读书的时候当然会出现不懂的概念和术语或者定理什么的.所以在这记录一下啦--- hermit矩阵要理解它好像先要知道什么是共轭(conjugate). 参见百度百科:https://baike.baidu.com/item/%E5%85%B1%E8%BD%AD/31802 本意:两头牛背上的架子称为轭,轭使两头牛同步行走.共轭即为按一定的规律相配的一对.通俗点说就是孪生. 共轭关系,通俗来说一般用以描述两件事物以一定规律相互配对或…
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD…
GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientific library下载地址:http://ftpmirror.gnu.org/gsl/ 相应说明文档下载地址: http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz 编译时需要加上一些后缀: g++ xxx.cpp -lgsl -lgslcbla…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
本章介绍tf基础知识,主要包括cookbook的第一.二章节. 方针:先会用,后定制 Ref: TensorFlow 如何入门? Ref: 如何高效的学习 TensorFlow 代码? 顺便推荐该领域三件装备: How TensorFlow Works? Steps Import or generate datasets Transform and normalize data Partition datasets into train, test, and validation sets Se…
奇异分解 假设C是m×n矩阵,U是m×m矩阵,其中U的列为 的正交特征向量,V为n×n矩阵,其中V的列为 的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解: 其中和的特征值相同,为 ,且. 是m ×n的矩阵, , .令 ,则 . 称为矩阵C的奇异值. 所以有了矩阵C,可以求得或者,从求得方阵或者的特征值,利用这些特征值得到,从而求得,求得的时候已经求得U或者V. 例题: ,求A的奇异值分解. 解: , , , 故 , 当 时,特征向量为 ,, , 标准化后 , ,令 同理,先求 ,再求U.…