深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…
深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50856583 声明:版权所有,转载请联系作者并注明出处 1.引言 本系统是基于CVPR2015的论文<Deep Learning of Binary Hash Codes for Fast Image Retrieval>实现的海量数据下的基于内容图片检索系统,250w…
1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Babysitting th…
首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达. 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现…
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术.在其中,分词技术是一种比较基础的模块.对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来.而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来.分词的意义非常大,在中文中,单字作为最基本的语义单位…
关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: #coding:cp936 #建立单层神经网络,训练四个样本, import numpy as np def nonlin(x,deriv=False): #deriv为False计算前向传播值,为True时计算反向偏导 if deriv == True: return x*(1-x) return 1/(1+np.exp(-x)) X = np.array([[0,0,1],[0,1,1],[1,…
代码1如下: #深度学习入门课程之感受神经网络(上)代码解释: import numpy as np import matplotlib.pyplot as plt #matplotlib是一个库,pyplot是其中一个模块 #%matplotlib inline 适用于在ipython notebook中进行绘图内嵌说明,由于我在Pycharm上写的,应此不需要这条以及下面的几个命令 plt.rcParams['figure.figsize'] = (10.0,8.0) #创建一个10*8大小…
目录 1.引言 2.研究方法 2.1本次综述的贡献 2.2综述方法 2.3与现有综述的比较 3.行人再识别基准数据集 3.1基于图像的再识别数据集 3.2基于视频的再识别数据集 4.基于图像的深度再识别贡献 4.1深度再识别架构 4.1.1再识别的分类模型 4.1.2再识别的验证模型 4.1.3基于Triplet的再识别模型 4.1.4基于部件的再识别模型 4.1.5基于注意力的再识别模型 4.2基于重识别挑战的方法 4.3基于模态的重识别方法 4.3.1基于可见图像的重识别方法 4.3.2跨模…
目前,深度网络(Deep Nets)权值训练的主流方法还是梯度下降法(结合BP算法),当然在此之前可以用无监督的方法(比如说RBM,Autoencoder)来预训练参数的权值,而梯度下降法应用在深度网络中的一个缺点是权值的迭代变化值会很小,很容易收敛到的局部最优点:另一个缺点是梯度下降法不能很好的处理有病态的曲率(比如Rosenbrock函数)的误差函数.而本文中所介绍的Hessian Free方法(以下简称HF)可以不用预训练网络的权值,效果也还不错,且其适用范围更广(可以用于RNN等网络的学…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…