用fast rcnn绘制loss曲线遇到的问题】的更多相关文章

运行fast rcnn的train,会进入ipython,要先exit退出才能继续运行程序 绘制图像时,用了命令: ./tools/train_net.py --gpu 0 --solver models/VGG_CNN_M_1024/solver.prototxt --weights data/fast_rcnn_models/vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel --imdb Kakoutrain 2>&1 |tee out.log…
第一步保存日志文件,用重定向即可: $TOOLS/caffe train --solver=$SOLVERFILE >& |tee out.log 第二步直接绘制: python plot_training_log.py testloss.png out.log 这个plot_training_log.py在这个目录下caffe-fast-rcnn/tools/extra 2是选择画哪种类型的图片,具体数字是代表哪个类型可以查看帮助信息看到: 0: Test accuracy vs. Ite…
# -*- coding=utf-8 -*-''' import matplotlib.pyplot as plt import re logs=open('loss').read() #print logs pattern = re.compile('\ .*?Iteration (\d+)\, loss = (.*?)\n',re.S) result= re.findall(pattern,logs) print len(result) #end to end img={} c=0 iter…
Caffe---Pycaffe 绘制loss和accuracy曲线 <Caffe自带工具包---绘制loss和accuracy曲线>:可以看出使用caffe自带的工具包绘制loss曲线和accuracy曲线十分的方便简单,而这种方法看起来貌似只能分开绘制曲线,无法将两种曲线绘制在一张图上.但,我们有时为了更加直观的观察训练loss和测试loss,往往需要将这两种曲线绘制在一张图上.那如何解决呢?python接口,Pycaffe可以实现将这两种曲线绘制在一张图上. 目前,我知道的知识面中,Pyc…
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe #设置当前目录 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_ro…
Caffe自带工具包---绘制loss和accuracy曲线 为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练.本文主要介绍在基于caffe框架训练网络时,利用caffe自带的工具包来绘制曲线.caffe中自带小工具: caffe-master/tools/extra/parse_log.sh, caffe-master/tools/extra/extract_seconds.py和 caffe-…
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CNN的训练先…
很久之前试着写一篇深度学习的基础知识,无奈下笔之后发现这个话题确实太大,今天发一篇最近看的论文Fast RCNN.这篇文章是微软研究院的Ross Girshick大神的一篇作品,主要是对RCNN的一些改进,但是效果十分明显,paper和项目的地址都能从Ross Girshick的主页找到:http://people.eecs.berkeley.edu/~rbg/ 刚刚接触深度学习,难免纰漏很多,还请大神指教. 自己的百度云里也有一些相关内容http://pan.baidu.com/s/1o79N…
继续上次的学习笔记,在RCNN之后是Fast RCNN,但是在Fast RCNN之前,我们先来看一个叫做SPP-net的网络架构. 一,SPP(空间金字塔池化,Spatial Pyramid Pooling)简介: 有一个事实需要说清楚:CNN的卷积层不需要固定尺寸的图像,全连接层是需要固定大小输入的,因此提出了SPP层放到卷积层的后面.SPPNet将任意大小的图像池化生成固定长度的图像表示,如下图所示: SPP的优点:1)任意尺寸输入,固定大小输出,2)层多,3)可对任意尺度提取的特征进行池化…
目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括Fast R-CNN.Faster R-CNN 和 FPN等.第二部分则重点讨论了包括YOLO.SSD和RetinaNet等在内的单次检测器,它们都是目前最为优秀的方法. 一.基于候选区域的目标检测器 1.1  滑动窗口检测器 自从 AlexNet 获得 ILSVRC 2012 挑战赛冠军后,用 CN…
0 - 背景 经典的R-CNN存在以下几个问题: 训练分多步骤(先在分类数据集上预训练,再进行fine-tune训练,然后再针对每个类别都训练一个线性SVM分类器,最后再用regressors对bounding box进行回归,并且bounding box还需要通过selective search生成) 时间和空间开销大(在训练SVM和回归的时候需要用网络训练的特征作为输入,特征保存在磁盘上再读入的时间开销较大) 测试比较慢(每张图片的每个region proposal都要做卷积,重复操作太多)…
 Fast RCNN 中将与 groud truth 的 IoU 在 [0.1, 0.5) 之间标记为负例, [0, 0.1) 的 example 用于 hard negative mining. 在训练时一般输入为N=2张图片, 选择 128 个 RoI, 即每张图片 64 个 RoI. 每张图片, 按照1:3的比例来抽取的 RoI 的话, 要在负例中抽取 48 个, Fast RCNN 采用 random sampling 策略. hard negative example 首先我们看看…
在介绍Fast R-CNN之前我们先介绍一下SPP Net 一.SPP Net SPP:Spatial Pyramid Pooling(空间金字塔池化) 众所周知,CNN一般都含有卷积部分和全连接部分,其中,卷积层不需要固定尺寸的图像,而全连接层是需要固定大小的输入. 所以当全连接层面对各种尺寸的输入数据时,就需要对输入数据进行crop(crop就是从一个大图扣出网络输入大小的patch,比如227×227),或warp(把一个边界框bounding box的内容resize成227×227)等…
作者:Ross Girshick 该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可以同时学习对object proposals的分类与目标空间位置的确定,与以往的算法相比该方法在训练和测试速度.检测精度上均有较大提升. 目标检测算法比较复杂主要是因为检测需要确定目标的准确位置,这样的话就面临着两个主要的问题:首先,大量的candidate object locations(pro…
论文地址:Fast R-CNN R-CNN的缺陷 (1)训练是一个多级的流水线.R-CNN首先在候选目标上微调一个卷积神经网络,使用log loss.然后使用SVMs充当目标分类器,以取代softmax分类器,最后通过regression对bounding-box 进行微调.在R-CNN中,20类即20个SVM分类器训练,20个bounding box回归器训练(测试同),非常繁琐.…
废话不多说,上车吧,少年 paper链接:Fast R-CNN &创新点 规避R-CNN中冗余的特征提取操作,只对整张图像全区域进行一次特征提取: 用RoI pooling层取代最后一层max pooling层,同时引入建议框信息,提取相应建议框特征: Fast R-CNN网络末尾采用并行的不同的全连接层,可同时输出分类结果和窗口回归结果,实现了end-to-end的多任务训练[建议框提取除外],也不需要额外的特征存储空间[R-CNN中这部分特征是供SVM和Bounding-box regres…
Fast R-CNN是R-CNN的改良版,同时也吸取了SPP-net中的方法.在此做一下总结. 论文中讲到在训练阶段,训练一个深度目标检测网络(VGG16),训练速度要比R-CNN快9倍左右,比SPP-net快3倍左右.在测试阶段,处理一张图片需要0.3s.在PASCAL VOC 2012数据库上的mAP也达到了66%,比R-CNN高两个百分点. 提出背景 这个方法提出的背景是,R-CNN和SPP-net在目标检测方面还有一些不足.不足表现在一下几点: 1.训练分为多个阶段,首先要微调ConvN…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
Fast RCNN是对RCNN的性能优化版本,在VGG16上,Fast R-CNN训练速度是RCNN的9倍, 测试速度是RCNN213倍:训练速度是SPP-net的3倍,测试速度是SPP-net的3倍,并且达到了更高的准确率,本文为您解读Fast RCNN. Overview Fast rcnn直接从单张图的feature map中提取RoI对应的feature map,用卷积神经网络做分类,做bounding box regressor,不需要额外磁盘空间,避免重复计算,速度更快,准确率也更高…
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-CNN [3]Faster R-CNN: towards real-time object detection with region proposal networks 1. 概述 图像分类,检测及分割是计算机视觉领域的三大任务.图像分类模型是将图像划分为单个类别,通常对应于图像中最突出的物体.但是…
(原文地址:http://blog.csdn.net/liuweizj12/article/details/64920428) 在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练.本文主要介绍在基于caffe框架训练网络时,如何利用caffe自带的一些实用的工具包来绘制曲线 一. 设置训练配置文件参数,保存训练时的参数至log文件 [python] view plain copy TOOLS=./build/tools LOG=example…
做语义分割的大概都知道这几篇文章了,将一个传统的计算机视觉模型,用CNN一点一点的替换,直到最后构建了一个完整的基于CNN的端到端的模型.这几篇文章有一定的连贯性.从中可以看到一种研究的趋势走向. 上一篇文章里介绍过,Selective Search for Object Recognition,这篇 paper 发表于 2013 年,是一个传统的基于特征提取加分类识别的模型,这个模型主要分成三个部分: 1) 候选区域的提取,这里主要用到了图像分割以及区域融合,经过这一步,从一张图像里大概提取出…
RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation SPPNet: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition…
https://zhuanlan.zhihu.com/p/21412911 rcnn需要固定图片的大小,fast rcnn不需要 rcnn,sppnet,fast rcnn,ohem,faster rcnn,rfcn都属于基于region proposal(候选区域)的目标检测方法,即预先找出图中目标可能出现的位置. fast rcnn:在特征提取层的最后一层卷积后加入roi pooling layer,损失函数使用多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络…
不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化. 算法可以分为四步:         1)候选区域选择 Region P…
Fast RCNN的结构: 先从这幅图解释FAST RCNN的结构.首先,FAST RCNN的输入是包含两部分,image以及region proposal(在论文中叫做region of interest,ROI).Image经过深度网络(deep network)之后得到feature map,然后可以从feature map中找到ROI在其中的投射projection得到每个patch,但论文没有提及怎么在map中寻找对应的patch,估计可以通过位置关系找到(猜想,因为deep Conv…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
Fast RCNN建立在以前使用深度卷积网络有效分类目标proposals的工作的基础上.使用了几个创新点来改善训练和测试的速度,同时还能增加检测的精确度.Fast RCNN训练VGG16网络的速度是RCNN速度的9倍,测试时的速度是其的213倍.与SPPnet对比,Fast RCNN训练VGG16网络的速度是其速度的3倍,测试时的速度是其的10倍,而且还更加准确了.Fast RCNN使用Python和C++(使用caffe)实现的,并且能够再开源MIT License 中获得代码,网址为:ht…
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy #相比于之前的…
引言 之前学习了 R-CNN 和 SPPNet,这里做一下回顾和补充. 问题 R-CNN 需要对输入进行resize变换,在对大量 ROI 进行特征提取时,需要进行卷积计算,而且由于 ROI 存在重复区域,所以特征提取存在大量的重复计算: SPPNet 针对 R-CNN 进行了改进,其利用空间金字塔池化来解决形变问题,并且只计算一次卷积得到特征图,ROI 的特征从该特征图的对应区域提取: 但是两者采用相同的计算框架,非常繁琐,特别是需要训练SVM分类器,拟合检测框回归,这两步不仅需要分步进行,使…