##TF-IDF TF(词频):  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T.那么 TF = T/N; 所以表示为: 某一个词在某一个文件中出现的频率. TF-IDF(词频-逆向文件频率):  表示的词频和逆向文件频率的乘积. 比如:  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T.那么 TF = T/N;  并且‘明星’这个词,在W份文件中出现,而总共有X份文件,那么 IDF = log(X/W) ; 而: TF-IDF =  TF *  IDF = T…
SVM分类器:支持向量机Support Vector Machine. 一个普通的SVM就是一条直线,用来完美划分linearly separable的两类.解决线性 要解决非线性需要到高维处理: 核函数 TF-IDF(term frequency–inverse document frequency) 词频 (term frequency, TF) 逆向文件频率 (inverse document frequency, IDF) TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率T…
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`.…
https://blog.csdn.net/lanchunhui/article/details/61712830 https://www.cnblogs.com/silence-tommy/p/7029561.html 二者的主要区别在于: tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值: 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初…
1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价…
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    3*3的卷积经过扩张以后形成了5*5                          feature_map为偶数                                              feature_map为偶数 代码:主函数 with tf.variable_scope('…
函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflow/python/ops/state_ops.py.   将 value 赋值给 ref,并输出 ref,即 ref = value:   这使得需要使用复位值的连续操作变简单   Defined in tensorflow/python/framework/tensor_shape.py. Arg…
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
import tensorflow as tf import numpy as np W = tf.Variable([[2,1,8],[1,2,5]], dtype=tf.float32, name='weights') b = tf.Variable([[1,2,5]], dtype=tf.float32, name='biases') init= tf.global_variables_initializer() saver = tf.train.Saver() with tf.Sessi…