Profile:PyCharm提供了性能分析工具Run->Profile,如下图所示.利用Profile工具可以对代码进行性能分析,找出瓶颈所在. 测试:下面以一段测试代码来说明如何使用pycharm的Profile功能. 测试代码见下文,文件命名为Test.py, 一共有5个函数,每个函数都调用了time.sleep进行延时,其中fun5函数调用了fun4函数: import time def fun1(a, b): print('fun1') print(a, b) time.sleep(1…
Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. p…
Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/3341231.html 使用ipdb 使用profile import profile def profileTest(): Total =1; for i in range(10): Total=Total*(i+1) print Total return Total if __name__ ==…
[编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 97% 的情况下,都是如此:过早的优化是万恶之源.-- Donald Knuth 如果不先想想Knuth的这句名言,就开始进行优化工作,是不明智的.然而,有时你为了获得某些特性不假思索就写下了O(N^2) 这样的代码,虽然你很快就忘记它们了,它们却可能反咬你一口,给你带来麻烦:本文就是为这种情况而准备…
百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅知道如何写代码是不够的,还要能够充分利用关键代码的处理能力.本书将讨论如何对Python代码进行性能分析,找出性能瓶颈,并通过不同的性能优化技术消除瓶颈. 本书从基本的概念开始,循序渐进地介绍高级的优化主题.首先介绍了Python的主流性能分析器,以及用于帮助理解性能分析结果的可视化工具.然后介绍了…
前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了),因此在实际评测程序时我们还是需要实际的考量程序的运行时间和瓶颈,最好具体到执行一段代码多少次,执行一段代码花了多少时间,幸好的是Python自带了许多有用的工具,可以帮助我们实现这些要求,下面是一些我在学习中记录的笔记,从简单到复杂介绍了python性能分析的方法,希望我的笔记能帮到您. 注:写作…
1.http://valgrind.org/downloads/old.html 2.yum install valgrind Valgrind的主要作者Julian Seward刚获得了今年的Google-O'Reilly开源大奖之一──Best Tool Maker.让我们一起来看一下他的作品.Valgrind是运行在Linux上一套基于仿真技术的程序调试和分析工具,它包含一个内核──一个软件合成的CPU,和一系列的小工具,每个工具都可以完成一项任务──调试,分析,或测试等.Valgrind…
当页面中发生卡顿,最先考虑的是swf文件造成的卡顿,经过排查发现不是swf造成的影响,利用Chrome的Performance工具发现页面中的一些元素不断在重新布局,造成潜在的性能瓶颈. 首先在Chrome中进入隐身模式,然后再在Chrome中打开开发者调试窗口,切换至Performance标签进行性能排查(它相当于一些IDE中的Profile) 当采样至一定的时间段后,点击暂停,浏览器会生成如下的图表,发现,图表最上层有大量的红点,这是Chrome给出的可能的性能瓶颈点,在它下面绿色的起伏状线…
Table of Contents 1. 性能分析和调优工具简介 1.1. Context Manager 1.2. Decorator 1.3. 系统自带的time命令 1.4. python timeit 模块 1.5. cProfile 1.5.1. profile.Profile 1.6. lineprofiler 1.6.1. 示例 1.7. memoryprofiler 1.8. TODO objgraph 2. 参考资料: 3. NEXT 代码的调优tips 性能分析和调优工具简介…
Python自带了几个性能分析的模块:profile.cProfile和hotshot,使用方法基本都差不多,无非模块是纯Python还是用C写的.本文介绍cProfile.  例子 import time def func1(): sum = 0 for i in range(1000000): sum += i def func2(): time.sleep(10) func1() func2() 运行 python -m cProfile del.py 运行结果 结果分析    执行了6个…