重塑 data.table】的更多相关文章

在前面的章节中,我们已经学习了如何使用 reshape2 扩展包对 data.frame 进行塑形.其实,data.table 扩展包为 data.table 对象提供了更快更强的 dcast( ) 函数和 melt( ) 函数.例如,将 toy_tests 的每个产品的质量得分按照年和月进行对齐:toy_tests[, ym := substr(date, 1, 6)]toy_quality <- dcast(toy_tests, ym ~ id, value.var = "qualit…
在第一节中,我们回顾了许多用于操作数据框的内置函数.然后,了解了 sqldf 扩展包,它使得简单的数据查询和统计变得更简便.然而,两种方法都有各自的局限性.使用内置函数可能既繁琐又缓慢,而相对于各式各样的 R 函数来说,SQL 又不够强大,所以用 sqldf 进行数据的汇总统计,也不容易.data.table 包提供了一个加强版的 data.frame.它运行效率极高,而且能够处理适合内存的大数据集,它通过 [ ] 实现了一种自然的数据操作语法.如果尚未安装,请运行以下命令:install.pa…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
data.table 1.生成一个data.table对象 生成一个data.table对象,记为DT. library(data.table) :],V3=round(rnorm(),),V4=:) DT ##     V1 V2      V3 V4 ##  :    A   ##  :    B - ##  :    C - ##  :    A - ##  :    B   ##  :    C - ##  :    A - ##  :    B - ##  :    C   ## : …
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
首先介绍Data Table的语法: 1.DataTable.value(ParameterID, SheetID) 2.DataTable(ParameterID, SheetID) 以上2种方法的效果是一样的. 使用例子: WebEdit("关键字输入框").Set DataTable.Value("列名",“表名”) 然后比较Global Sheet和Local Sheet 1.Global Sheet:是一个全局变量,有几行数据,程序就要回放几次. 它受Da…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比. 首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S, #!/usr/bin/sh function main() { start_tm=date start_h=`$start_tm…
data.table包主要特色是:设置keys.快速分组和滚得时序的快速合并.data.table主要通过二元检索法大大提高数据操作的效率,同时它也兼容适用于data.frame的向量检索法. require(data.table) ## Loading required package: data.table 1.创建data.table格式数据 类似于data.frame数据的创建,使用data.table函数 (DF = data.frame(x=c("b","b&qu…