Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learni…
这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在深度学习中的深度指的是数据模型中包含着的多个层次,而深度学习是对一堆数值做数学运算,但是这种数学运算是高纬度的,是大量的:在这些数学运算中,深度学习中的层通过反馈(比如后向传播)来对参数进行调整,然后再进行计算.如此反复数次,从而越来越接近我们所给出的正确结果.而在这个过程中,深度学习中的每个层所学…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…
在本文中,我们将研究一个卷积神经网络来解决硬币识别问题,并且我们将在Keras.NET中实现一个卷积神经网络. 在这里,我们将介绍卷积神经网络(CNN),并提出一个CNN的架构,我们将训练它来识别硬币. 什么是CNN?正如我们在本系列的前一篇文章中提到的,CNN是一类经常用于图像分类任务的神经网络(NN),比如物体和人脸识别.在CNN中,并非每个节点都连接到下一层的所有节点.这种部分连通性有助于防止在完全连接的网络神经网络中出现的过拟合问题,并且加速了神经网络的收敛速度. 围绕CNN的核心概念是…
在实现网络爬虫的过程中,验证码的出现总是会阻碍爬虫的工作.本期介绍一种利用深度神经网络来实现的端到端的验证码识别方法.通过本方法,可以在不切割图片.不做模板匹配的情况下实现精度超过90%的识别结果. 本文分为两个部分,第一个部分介绍如何利用深度神经网络实现验证码的训练和识别,第二个部分介绍在实现过程中需要克服的工程问题. 一. 基于深度神经网络的验证码识别 验证码的识别是从图片到文字的过程.传统的算法如OCR正是为了解决此类问题而设计的.然而,在真实情形中,验证码通常并不以规则的文字出现,即文字…
今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,François Chollet‏ 再一次在推特上表示 Keras 官方文档已经基本完成!他非常感谢翻译和校对人员两个多月的不懈努力,也希望 Keras 中文使用者能继续帮助提升文档质量. 这一次发布的是 Keras 官方中文文档,它得到了严谨的校对而提升了整体质量.但该项目还在进行中,虽然目前已经上线了很多 A…
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型. 卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型.用卷积网络识别MNIST数据集. from keras import layers from keras import models mode…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
https://blog.csdn.net/LSG_Down/article/details/81327072 将文本数据处理成有用的数据表示 循环神经网络 使用1D卷积处理序列数据 深度学习模型可以处理文本序列.时间序列.一般性序列数据等等.处理序列数据的两个基本深度学习算法是循环神经网络和1D卷积(2D卷积的一维模式). 文本数据 文本是最广泛的序列数据形式.可以理解为一系列字符或一系列单词,但最经常处理的是单词层面.自然语言处理的深度学习是应用在单词.句子或段落上的模式识别:就像计算机视觉…
在这篇文章中,我们将回顾监督机器学习的基础知识,以及训练和验证阶段包括哪些内容. 在这里,我们将为不了解AI的读者介绍机器学习(ML)的基础知识,并且我们将描述在监督机器学习模型中的训练和验证步骤. ML是AI的一个分支,它试图通过归纳一组示例而不是接收显式指令来让机器找出如何执行任务.ML有三种范式:监督学习.非监督学习和强化学习.在监督学习中,一个模型(我们将在下面讨论)通过一个称为训练的过程进行学习,在这个过程中,它会提供示例输入和正确输出.它了解数据集示例中哪些特性映射到特定输出,然后能…