首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
《RabbitMQ》如何保证消息不被重复消费
】的更多相关文章
《RabbitMQ》如何保证消息不被重复消费
一 重复消息 为什么会出现消息重复?消息重复的原因有两个:1.生产时消息重复,2.消费时消息重复. 1.1 生产时消息重复 由于生产者发送消息给MQ,在MQ确认的时候出现了网络波动,生产者没有收到确认,实际上MQ已经接收到了消息.这时候生产者就会重新发送一遍这条消息. 生产者中如果消息未被确认,或确认失败,我们可以使用定时任务+(redis/db)来进行消息重试. @Component @Slf4J public class SendMessage { @Autowired private Me…
【消息队列】kafka是如何保证消息不被重复消费的
一.kafka自带的消费机制 kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了.下次我要是重启,就会继续从上次消费到的offset来继续消费. 但是当我们直接kill进程了,再重启.这会导致consumer有些消息处理了,但是没来得及提交offset.等重启之后,少数消息就会再次消费一次. 其他MQ也会有这种重复消费的问题,那么针对这种问题,我…
RocketMQ(消息重发、重复消费、事务、消息模式)
分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs/cn 分布式消息系统作为实现分布式系统可扩展.可伸缩性的关键组件,需要具有高吞吐量.高可用等特点.而谈到消息系统的设计,就回避不了两个问题: 消息的顺序问题 消息的重复问题 RocketMQ作为阿里开源的一款高性能.高吞吐量的消息中间件,它是怎样来解决这两个问题的?RocketMQ 有哪些关键特性…
实际业务处理 Kafka 消息丢失、重复消费和顺序消费的问题
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比如我们使用 Kakfa 时,以下场景都会发生消息丢失: producer -> broker (生产者生产消息) broker -> broker (集群环境,broker 同步给其他 broker) broker -> consumer (消费者消费消息) 解决方案也很简单,设置 acks…
springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)
前言: RabbitMQ相关知识请参考: https://www.jianshu.com/p/cc3d2017e7b3 Linux安装RabbitMQ请参考: https://www.jianshu.com/p/ee9f7594212b Windows安装RabbitMQ请参考: https://www.jianshu.com/p/c7726ba4b046 一.先扔一张图 说明: 本文涵盖了关于RabbitMQ很多方面的知识点, 如: 消息发送确认机制 消费确认机制 消息的重新投递 消费幂等性,…
(转载)springboot + rabbitmq发送邮件(保证消息100%投递成功并被消费)
转载自https://www.jianshu.com/p/dca01aad6bc8 一.先扔一张图 image.png 说明: 本文涵盖了关于RabbitMQ很多方面的知识点, 如: 消息发送确认机制 消费确认机制 消息的重新投递 消费幂等性, 等等 这些都是围绕上面那张整体流程图展开的, 所以有必要先贴出来, 见图知意 二.实现思路 简略介绍163邮箱授权码的获取 编写发送邮件工具类 编写RabbitMQ配置文件 生产者发起调用 消费者发送邮件 定时任务定时拉取投递失败的消息, 重新投递…
Kafka消息保证不丢失和重复消费问题
使用同步模式的时候,有3种状态保证消息被安全生产,在配置为1(只保证写入leader成功)的话,如果刚好leader partition挂了,数据就会丢失.还有一种情况可能会丢失消息,就是使用异步模式的时候,当缓冲区满了,如果配置为0(还没有收到确认的情况下,缓冲池一满,就清空缓冲池里的消息),数据就会被立即丢弃掉. 在数据生产时避免数据丢失的方法: 只要能避免上述两种情况,那么就可以保证消息不会被丢失.就是说在同步模式的时候,确认机制设置为-1,也就是让消息写入leader和所有的副本.还有,…
RabbitMQ 如何保证消息不丢失?
RabbitMQ一般情况很少丢失,但是不能排除意外,为了保证我们自己系统高可用,我们必须作出更好完善措施,保证系统的稳定性. 下面来介绍下,如何保证消息的绝对不丢失的问题,下面分享的绝对干货,都是在知名互联网产品的产线中使用. 1.消息持久化 2.ACK确认机制 3.设置集群镜像模式 4.消息补偿机制 第一种:消息持久化 RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失. 所以就要对消息进行持久化处理.…
RabbitMQ如何保证消息99.99%被发送成功?
1. 本篇概要 RabbitMQ针对这个问题,提供了以下几个机制来解决: 生产者确认 持久化 手动Ack 本篇博客我们先讲解下生产者确认机制,剩余的机制后续单独写博客进行讲解. 2. 生产者确认 要想保证消息不丢失,首先我们得保证生产者能成功的将消息发送到RabbitMQ服务器. 但在之前的示例中,当生产者将消息发送出去之后,消息到底有没有正确地到达服务器呢?如果不进行特殊配置,默认情况下发送消息的操作是不会返回任何消息给生产者的,也就是默认情况下生产者是不知道消息有没有正确的到达服务器. 从b…
Kafka如何保证百万级写入速度以及保证不丢失不重复消费
一.如何保证百万级写入速度: 目录 1.页缓存技术 + 磁盘顺序写 2.零拷贝技术 3.最后的总结 “这篇文章来聊一下Kafka的一些架构设计原理,这也是互联网公司面试时非常高频的技术考点. Kafka是高吞吐低延迟的高并发.高性能的消息中间件,在大数据领域有极为广泛的运用.配置良好的Kafka集群甚至可以做到每秒几十万.上百万的超高并发写入. 那么Kafka到底是如何做到这么高的吞吐量和性能的呢?这篇文章我们来一点一点说一下. 1.页缓存技术 + 磁盘顺序写 首先Kafka每次接收到数据都会往…
rabbitmq如何保证消息可靠性不丢失
目录 生产者丢失消息 代码模拟 事务 confirm模式确实 数据退回监听 MQ事务相关软文推荐 MQ丢失信息 消费者丢失信息 之前我们简单介绍了rabbitmq的功能.他的作用就是方便我们的消息解耦.紧接着问题就会暴露出来.解耦就设计到双方系统不稳定问题.在mq中有生产者.mq.消费者三个角色.其中一个角色down机或者重启后.就设计到消息的丢失问题. 因为MQ整个消息周期设计到上述的三个角色,所以我们从这个三个角色开始讨论丢失数据的情况.并如何解决 生产者丢失消息 在生产数据程序中,消息已经…
kafka如何保证不重复消费又不丢失数据_Kafka写入的数据如何保证不丢失?
我们暂且不考虑写磁盘的具体过程,先大致看看下面的图,这代表了 Kafka 的核心架构原理. Kafka 分布式存储架构 那么现在问题来了,如果每天产生几十 TB 的数据,难道都写一台机器的磁盘上吗?这明显是不靠谱的啊!所以说,这里就得考虑数据的分布式存储了,我们结合 Kafka 的具体情况来说说.在 Kafka 里面,有一个核心的概念叫做"Topic",这个 Topic 你就姑且认为是一个数据集合吧.举个例子,如果你现在有一份网站的用户行为数据要写入 Kafka,你可以搞一个 Topi…
RabbitMQ 入门系列:7、保障消息不重复消费:产生消息的唯一ID。
系列目录 RabbitMQ 入门系列:1.MQ的应用场景的选择与RabbitMQ安装. RabbitMQ 入门系列:2.基础含义:链接.通道.队列.交换机. RabbitMQ 入门系列:3.基础含义:持久化.排它性.自动删除.强制性.路由键. RabbitMQ 入门系列:4.基础编码:官方SDK使用:链接创建.单例改造.发送消息.接收消息. RabbitMQ 入门系列:5.基础编码:交换机的进阶介绍及编码方式. RabbitMQ 入门系列:6.保障消息:不丢失:发送方.Rabbit存储端.接收方…
RabbitMQ保证消息的顺序性
当我们的系统中引入了MQ之后,不得不考虑的一个问题是如何保证消息的顺序性,这是一个至关重要的事情,如果顺序错乱了,就会导致数据的不一致. 比如:业务场景是这样的:我们需要根据mysql的binlog日志同步一个数据库的数据到另一个库中,加如在binlog中对同一条数据做了insert,update,delete操作,我们往MQ顺序写入了insert,update,delete操作的三条消息,那么根据分析,最终同步到另一个库中,这条数据是被删除了的.但是,如果这三条消息不是按照inse…
kafka 保证消息被消费和消息只消费一次
1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O,一般我们会将消息写入到操作系统的 Page Cache 中,然后在合适的时间将消息刷新到磁盘上. 例如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所谓的异步刷盘. 不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会…
程序重启RocketMQ消息重复消费
最近在调试RocketMQ消息发送与消费的Demo时,发现一个问题:只要重启程序,RocketMQ消息就会重复消费. 那么这是什么原因导致的,又该如何解决呢? 经过一番排查,发现程序使用的RocketMQ客户端版本是3.6.2,而测试环境安装的RocketMQ环境的版本是4.1.0.原来是客户端和服务器端版本不一样导致的,消息并没有最终被消费,即没有ACK消息确认,只要程序重启就会重复消费. 解决方案:RocketMQ客户端版本使用与服务器端的同一版本,即4.1.0版本. 划重点:使用Rocke…
Rabbit MQ 怎么保证可靠性、幂等性、消费顺序?
RabbitMQ如何保证消息的可靠性 RabbitMQ消息丢失的三种情况 生产者弄丢消息时的解决方法 方法一:生产者在发送数据之前开启RabbitMQ的事务(采用该种方法由于事务机制,会导致吞吐量下降,太消耗性能.) 方法二:开启confirm模式(使用springboot时在application.yml配置文件中做如下配置,实现confirm回调接口,生产者发送消息时设置confirm回调) 小结: 事务机制和 confirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那…
《即时消息技术剖析与实战》学习笔记4——IM系统如何保证消息的可靠性
IM 系统中,保证消息的可靠投递主要体现在两方面,一是消息的不丢失,二是消息的不重复. 一.消息不丢失 消息丢失的原因 首先看一下发送消息的流程,如下图所示: 消息.可以采取"时间戳比对"机制进行完整性检查. (图片来源于即时消息技术剖析与实战第 04 讲) 用户 A 发出的消息,先到达IM服务端(步骤1),由服务端暂存(步骤2),成功后,服务端将成功的结果返回给用户A(步骤3),同时将消息推送给用户B(步骤4). 在这个过程中,丢失消息有以下几种情况: 1)步骤 1 因为网络不通等原…
RabbitMQ消息丢失问题和保证消息可靠性-消费端不丢消息和HA(二)
继续上篇文章解决RabbitMQ消息丢失问题和保证消息可靠性(一) 未完成部分,我们聊聊MQ Server端的高可用和消费端如何保证消息不丢的问题? 回归上篇的内容,我们知道消息从生产端到服务端,为了保证消息不丢,我们必须做哪些事情? 发送端采用Confirm模式,注意Server端没成功通知发送端,需要重发操作需要额外处理 消息的持久化处理 上面两个操作保证消息到服务端不丢,但是非高可用状态,如果节点挂掉,服务暂时不可用,需要重启后,消息恢复,消息不会丢失,因为有磁盘存储. 本文先从消费端讲起…
关于MQ的几件小事(三)如何保证消息不重复消费
1.幂等性 幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数.这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变.例如,"setTrue()"函数就是一个幂等函数,无论多次执行,其结果都是一样的.更复杂的操作幂等保证是利用唯一交易号(流水号)实现. 简单来说,幂等性就是一个数据…
RabbitMQ使用教程(五)如何保证队列里的消息99.99%被消费?
1. 前情回顾 RabbitMQ使用教程(一)RabbitMQ环境安装配置及Hello World示例 RabbitMQ使用教程(二)RabbitMQ用户管理,角色管理及权限设置 RabbitMQ使用教程(三)如何保证消息99.99%被发送成功? RabbitMQ使用教程(四)如何通过持久化保证消息99.99%不丢失? 截止目前,我们能够保证消息成功地被生产者发送到RabbitMQ服务器,也能保证RabbitMQ服务器发生异常(重启,宕机等)后消息不会丢失,也许你认为现在消息应该很安全了吧?其实…
RabbitMq(6) 如何保证消息不丢包
RabbitMQ一般情况很少丢失,但是不能排除意外,为了保证我们自己系统高可用,我们必须作出更好完善措施,保证系统的稳定性. 下面来介绍下,如何保证消息的绝对不丢失的问题,下面分享的绝对干货,都是在知名互联网产品的产线中使用. 1.消息持久化 2.ACK确认机制 3.设置集群镜像模式 4.消息补偿机制 一.消息持久化 RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失. 所以就要对消息进行持久化处理.如何…
RabbitMQ使用教程(三)如何保证消息99.99%被发送成功?
1. 前情回顾 RabbitMQ使用教程(一)RabbitMQ环境安装配置及Hello World示例 RabbitMQ使用教程(二)RabbitMQ用户管理,角色管理及权限设置 在以上两篇博客发布后不久,有细心的网友就评论,创建的队列和发送的消息,如果在没有启动消费者程序的时候,重启了RabbitMQ服务,队列和消息都丢失了. 这就引出了一个非常重要的问题,也是面试中经常会问的:在使用RabbitMQ时,如何保证消息最大程度的不丢失并且被正确消费? 2. 本篇概要 RabbitMQ针对这个问题…
RabbitMQ系列(四)--消息如何保证可靠性传输以及幂等性
一.消息如何保证可靠性传输 1.1.可能出现消息丢失的情况 1.Producer在把Message发送Broker的过程中,因为网络问题等发生丢失,或者Message到了Broker,但是出了问题,没有保存下来 针对这个问题,Producer可以开启MQ的事务,如果这个过程出现异常,进行回滚,但是有个很大的问题,你提交一个事务就会阻塞在那, 非常影响性能,生产环境肯定不会开启事务,一般都是使用confirm机制 2.Broker接收到Message暂存到内存,Consumer还没来得及消费,Br…
解决RabbitMQ消息丢失问题和保证消息可靠性(一)
原文链接(作者一个人):https://juejin.im/post/5d468591f265da03b810427e 工作中经常用到消息中间件来解决系统间的解耦问题或者高并发消峰问题,但是消息的可靠性如何保证一直是个很大的问题,什么情况下消息就不见了?如何防止消息丢失?下面通过这篇文章,我们就聊聊RabbitMQ 消息可靠性如何解决的? 本文分三部分说明 RabbitMQ 消息丢失场景有哪些? 如何避免消息丢失? 如何设计部署消息中间件保证消息可靠性? RabbitMQ 消息丢失场景有哪些?…
RabbitMQ高级之如何保证消息可靠性?
人生终将是场单人旅途,孤独之前是迷茫,孤独过后是成长. 楔子 本篇是消息队列RabbitMQ的第四弹. RabbitMQ我已经写了三篇了,基础的收发消息和基础的概念我都已经写了,学任何东西都是这样,先基础的上手能用,然后遇到问题再去解决,无法理解就去深入源码,随着时间的积累对这一门技术的理解也会随之提高. 基础操作已经熟练后,相信大家不可避免的会生出向那更高处攀登的心来,今天我就罗列一些RabbitMQ比较高级的用法,有些用得到有些用不上,但是一定要有所了解,因为大部分情况我们都是面向面试学习~…
RabbitMQ,为应对消息从发送到消费,各个环节消息丢失的解决方案
1.发送方 为保证消息到达exchange,在这个过程中不丢失. 用事务或者发送方确认机制 见<RabbitMQ实战指南>4.8节 2.为保证消息不会因为到达exchange后,无法路由到任何一个队列而丢失 解决方案一:发送方发送消息时 令mandatory参数=true,用ReturnListener异步接收没有任何队列接收而返回给发送方的消息. 见<RabbitMQ实战指南>4.1.1节 解决方案二:给exchange指定一个备份交换器及对…
Spring Cloud Stream如何处理消息重复消费?
最近收到好几个类似的问题:使用Spring Cloud Stream操作RabbitMQ或Kafka的时候,出现消息重复消费的问题.通过沟通与排查下来主要还是用户对消费组的认识不够.其实,在之前的博文以及<Spring Cloud微服务实战>一书中都有提到关于消费组的概念以及作用. 那么什么是消费组呢?为什么要用消费组?它解决什么问题呢?摘录一段之前博文的内容,来解答这些疑问: 通常在生产环境,我们的每个服务都不会以单节点的方式运行在生产环境,当同一个服务启动多个实例的时候,这些实例都会绑定到…
Kafka如何保证消息不丢失不重复
首先需要思考下边几个问题: 消息丢失是什么造成的,从生产端和消费端两个角度来考虑 消息重复是什么造成的,从生产端和消费端两个角度来考虑 如何保证消息有序 如果保证消息不重不漏,损失的是什么 大概总结下 消费端重复消费:建立去重表 消费端丢失数据:关闭自动提交offset,处理完之后受到移位 生产端重复发送:这个不重要,消费端消费之前从去重表中判重就可以 生产端丢失数据:这个是最麻烦的情况 解决策略: 1.异步方式缓冲区满了,就阻塞在那,等着缓冲区可用,不能清空缓冲区 2.发送消息之后回调函数,发…
高可用保证消息绝对顺序消费的BROKER设计方案
转自: http://www.infoq.com/cn/articles/high-availability-broker-design?utm_source=tuicool&utm_medium=referral 在要求严格顺序消息的场景下,消息的发送者,BROKER端(BROKER端和消息存储放在一起),消息的消费者都要求按照顺序进行,三者任何一个环节的乱序都会导致消息最终的消费顺序被打乱. 如果为每一个消息维护一个有序的ID,发送和存储消息无序,消费逻辑会变得非常复杂,消费端要对消息进行重…