【学习笔记】Tarjan 图论算法】的更多相关文章

Day 4 学习笔记 各种图论 图是什么???? 不是我上传的图床上的那些垃圾解释... 一.图: 1.定义 由顶点和边组成的集合叫做图. 2.分类: 边如果是有向边,就是有向图:否则,就是无向图. 平常的图一般都有标号,我称之为标号的图(废话)有序图,如果没有标号,就称之为无序图(没标号的图) 注意有向图和无向图转换之后可能不同,然后有序图和无序图转换之后也不同. 3.存储方式 1.基础方式:邻接矩阵 优点:O(1)查询, 缺点:O(n^2)存储 这个图很好的 解释了邻接矩阵的情况. 如果是有…
tarjan图论算法 标签: tarjan 图论 模板 洛谷P3387 [模板]缩点 算法:Tarjan有向图强连通分量+缩点+DAGdp 代码: #include <cstdio> #include <cstring> #include <vector> #include <queue> #include <algorithm> #include <iostream> #define psk push_back using name…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
Sarsa算法 是 TD算法的一种,之前没有严谨推导过 TD 算法,这一篇就来从数学的角度推导一下 Sarsa 算法.注意,这部分属于 TD算法的延申. 7. Sarsa算法 7.1 推导 TD target 推导:Derive. 这一部分就是Sarsa 最重要的内核. 折扣回报:$U_t=R_t+\gamma R_{t+1}+\gamma^2 R_{t+2}+\gamma^3 R_{t+3}+\cdots \ \quad={R_t} + \gamma \cdot U_{t+1} $ 即 将\(…
前言 之前的学习中也有好几次尝试过学习该算法,但是都无功而返,不仅仅是因为该算法各大博主.大牛的描述都比较晦涩难懂,同时我自己学习过程中也心浮气躁,不能专心. 现如今决定一口气肝到底,这样我明天就可以正式开始攻克阿里云天池大赛赛题,所以今天一天必须把Adaboost算法拿下!!! Adaboost boosting与bagging boosting 个体学习器间存在强依赖关系.必须串行生成的序列化方法,提高那些在前一轮被弱分类器分错的样本的权值,减小那些在前一轮被弱分类器分对的样本的权值, 使误…
前言 图论中联通性相关问题往往会牵扯到无向图的割点与桥或是下一篇博客会讲的强连通分量,强有力的\(Tarjan\)算法能在\(O(n)\)的时间找到割点与桥 定义 若您是第一次了解\(Tarjan\)算法,建议您反复阅读定义,借助图像来理解 桥与割边 对于无向连通图中点集的一个节点\(x\),删去节点\(x\)及其关联的边之后,存在一对不联通的点对\((a,b)\),则称\(x\)是这个无向图的割点 对于无向联通图中边集的一条边\(e\),删去边\(e\)之后,存在一对不联通的点对\((a,b)…
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而后这个有向图不再联通,我们便称删去的这条边为有向图的桥. 割点:在一个有向图中,如果删去一个点,使这个有向图中剩下的点不在联通,我们便称这个点为有向图的割点. Tarjan算法原理分析: 和上文一样的,我们求出一个dfn数组(进行dfs时遍历的顺序),和一个low数组(以u为根的子树中,能连到dfn…
今天,我们要探讨的就是--Tarjan算法. Tarjan算法的主要作用便是求一张无向图中的强连通分量,并且用它缩点,把原本一个杂乱无章的有向图转化为一张DAG(有向无环图),以便解决之后的问题. 首先,我们在原图上跑一遍DFS,然后会发现三种边: 1.正常边:嗯,顾名思义就是连接祖先和儿子节点的边. 2.横叉边:连接到了已经弹出的节点的边(也能叫它小三边). 3.返祖边:从儿子节点连到祖先的边. 那么通过进一步的观察我们可以发现:返祖边可能产生强连通分量,而横叉边不能.(如下图所示) DFS遍…
Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 这里有两个关键词,一个是有向图,另外一个是强连通分量.有向图是它的使用范围,我们只能使用在有向图当中.对于无向图其实也存在强连通分量这个概念,但由于无向图的连通性非常强,只需要用一个集合维护就可以知道连通的情况,所以也没有必要引入一些算法. 有向图我们都了解,那么什么叫做强连通分量呢?强连通分量的…
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解, 但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,比如数据结构.图论.运筹学等. 首先,大家需要明确…