在<如何计算假设检验的功效(power)和效应量(effect size)?>一文中,我们讲述了如何根据显著性水平α,效应量和样本容量n,计算功效,以及如何根据显著性水平α,功效和样本容量n,计算效应量.但这两个应用都属于事后检验,也就是说,就算假设检验之后计算出的功效或效应量不理想,我们也没有办法改变.因此,我们最好事先就把我们想要达到的功效和效应量确定好,然后根据显著性水平α,功效和效应量,计算样本容量n.这种事前检验的应用用得比较多. 此外,我们都知道,如果假设检验选取的样本量很小,那么…
8.3 Margin of Error 由该公式可知: To improve the precision of the estimate, we need to decrease the margin of error, E. Because the sample size, n, occurs in the denominator of the formula for E, we can decrease E by increasing the sample size. 可以通过减小Z或增大n…
spss19cn软件下载地址及破解包spss19_10039 软件包下载地址一 http://www.33lc.com/soft/41991.html 软件包下载地址二 http://dl.pconline.com.cn/download/360100.html 破解包下载地址链接: https://pan.baidu.com/s/1hselVpU 密码: fbxq 统计结论举例 吸烟有害健康,吸烟的男性寿命减少2250天. 每天摄取500毫升维生素C,生命可延长6年. 问题一:这些统计结论是如…
说明:本范例为符合CMMI 5级要求的范例 Prepared by 拟制 小张 Date 日期 2008-04-09 Reviewed by 评审人 小丽.小王.小李.小莉.小三.小四.小猪.小猫.小狗.小强 Date 日期 2008-04-14 Approved by 批准 小张 Date 日期 2008-04-24 Revision Record 修订记录 Date 日期 Revision Version 修订版本 Sec No. 修改章节 Change   Description 修改描述…
做完一个假设检验之后,如果结果具有统计显著性,那么还需要继续计算其效应量,如果结果不具有统计显著性,并且还需要继续进行决策的话,那么需要计算功效. 功效(power):正确拒绝原假设的概率,记作1-β. 假设检验的功效受以下三个因素影响: 样本量 (n):其他条件保持不变,样本量越大,功效就越大. 显著性水平 (α): 其他条件保持不变,显著性水平越低,功效就越小. 两总体之间的差异:其他条件保持不变,总体参数的真实值和估计值之间的差异越大,功效就越大.也可以说,效应量(effect size)…
孟德尔随机化(Mendelian Randomization) 统计功效(power)和样本量计算 1 统计功效(power)概念 统计功效(power)指的是在原假设为假的情况下,接受备择假设的概率. 用通俗的话说就是,P<0.05时,结果显著(接受备择假设); 在此结论下,我们有多大的把握坚信结果的显著性,此时需要用到power来表示这种"把握". 统计功效(power)的计算公式为 1-β. 说到β,要提一下假设检验中的一型错误和二型错误. 一型错误,用 α 表示,全称 T…
遇到的问题 在处理数据过程中,遇到需要取(n)个数的问题,而当样本量过大的时候,就不能简单的take(n),这类问题一般有两种情况: > - 有序取 TopN > - 无序取 N 先来讨论无序取N的情况: sample函数 sample(boolean, fraction,seed) : 按比例抽取 返回一个新的RDD withReplacement:元素可以多次抽样(在抽样时替换) withReplacement=true,表示有放回的抽样 withReplacement=false,表示无…
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 根据power,effect size,a,决定样本量 # -*- coding: utf-8 -*- """ sample…
样本量问题真的是好多人的老大难,是很多同学科研入门第一个拦路虎,今天给本科同学改大创标书又遇到这个问题,我想想不止是本科生对这个问题不会,很多同学从上研究生到最后脱离科研估计也没能把这个问题弄得很明白,那么希望大伙儿在看了这篇文章能够更加深入地理解样本量计算的逻辑,也能对大家的科研设计中的样本量设计部分有所启发. 样本量计算的逻辑 还记得我们最开始接触统计推断的时候,大家都知道一个词叫做原假设,原假设一般来讲都是"阴性的",我们统计推断要做的事情便是推翻原假设从而得出有"统计…
在医学统计学或者流行病学里的现场调查.样本选择经常会提到一个词:随机抽样.随机抽样是为了保证各比较组之间均衡性的一个很重要的方法.那么今天介绍的第一个函数就是用于抽样的函数sample:   > x=1:10       > sample(x=x)        [1]  3  5  9  6 10  7  2  1  8  4 第一行代码表示给x向量赋值1~10,第二行代码表示对x向量进行随机抽样.结果输出为每次抽样抽得的结果,可以看出该抽样为无放回抽样------最多抽n次,n为x向量中元…