模型融合---CatBoost 调参总结】的更多相关文章

一.参数速查 1.通用参数 2.性能参数 3.处理单元设置 二.分类 三.回归…
一.Catboost简介 全称:Gradient Boosting(梯度提升) + Categorical Features(类别型特征) 作者:俄罗斯的搜索巨头Yandex 官方地址 论文链接 | 项目地址 文档地址 视频 二.Catboost的特点 一般来说,Gradient Boosting(GB)方法适用于异质化数据.即,若你的数据集全由图片数据构成或者全由视频数据构成之类的,我们称其为同质化数据,这时使用神经网络往往会有更好的表现.但对于异质化数据,比如说数据集中有user gende…
Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模型算法和pipeline,内置的交叉验证和其他工具允许用户优化模型和pipeline中的超参数: 目录: 模型选择,也就是调参: 交叉验证: 训练集.验证集划分: 模型选择(调参) 机器学习的一个重要工作就是模型选择,或者说根据给定任务使用数据来发现最优的模型和参数,也叫做调试,既可以针对单个模型进…
在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression df = pd.read…
一般提升模型效果从两个大的方面入手 数据层面:数据增强.特征工程等 模型层面:调参,模型融合 模型融合:通过融合多个不同的模型,可能提升机器学习的性能.这一方法在各种机器学习比赛中广泛应用, 也是在比赛的攻坚时刻冲刺Top的关键.而融合模型往往又可以从模型结果,模型自身,样本集等不同的角度进行融合. 模型融合是后期一个重要的环节,大体来说有如下的类型方式: 加权融合(投票.平均) 硬投票 软投票 boosting/bagging(集成学习) stacking/blending 本文主要介绍sta…
Auto ML自动调参 本文介绍Auto ML自动调参的算法介绍及操作流程. 操作步骤 登录PAI控制台. 单击左侧导航栏的实验并选择某个实验. 本文以雾霾天气预测实验为例. 在实验画布区,单击左上角的Auto ML > 模型自动调参. 在自动调参配置页面,选择需要调参的算法,单击下一步. 说明 一个实验中有多个算法时请单选一个算法. 在调参配置模块,选择调参方式,完成后单击下一步. 阿里云机器学习提供如下调参方式供选择: EVOLUTIONARY_OPTIMIZER 随机选定a个参数候选集(探…
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share # -*- coding: utf-8 -*- """ Created on…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range=(1, 4)时效果最好这个结论,并在线上验证了下. 本篇博客继续调其他的参数.考虑到训练的速度,先将ngram_range设置为(1, 1),调min_df: min_df train-mlogloss val-mlogloss 1 0.103793 0.406085 2 0.1091895 0.…
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数据路径 train_path = './security_train.csv' test_path = './security_test.csv' # 将csv格式的训练数据处理为txt文本,只包含文件标签和api序列 def read_train_file(path): labels = [] #…