TensorFlow 核心——数据流图】的更多相关文章

1 计算模型 -- 计算图(Graph) 更多参考:数据流图 TensorFlow 中的所有计算都会被转化为计算图上的节点.TensorFlow 是一个通过计算图的形式来表述计算的编程系统.TensorFlow中的每个计算都是计算图的一个节点,而节点之间的边描述了计算之间的依赖关系. import sys sys.path.append('E:/zlab/') from plotnet import draw_feed_forward, DynamicShow TensorFlow 的计算模型是…
关于 TensorFlow TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深…
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新.手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题.接下来我们将一起学习这个优雅的技术:-).本文主要来源于陈天奇在华盛顿任教的课程CSE599G1: Deep Lea…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…
参考资料: 深度学习笔记目录 向机器智能的TensorFlow实践 TensorFlow机器学习实战指南 Nick的博客 TensorFlow 采用数据流图进行数值计算.节点代表计算图中的数学操作,计算图的边表示多维数组,即张量. 在 TensorFlow 官网上将其定义为基于数据流图的数值计算库,TensorFlow 还提供了一个可使得用户用数学方法从零开始定义模型的函数和类的广泛套件.这使得具有一定技术背景的用户可迅速而直观地创建自定义.具有较高灵活性的模型. TensorFlow 的计算模…
本文由云+社区发表 作者:[ Tencent Blade Team ] Cradmin 我们身处一个巨变的时代,各种新技术层出不穷,人工智能作为一个诞生于上世纪50年代的概念,近两年出现井喷式发展,得到各行各业的追捧,这背后来自于各种力量的推动,诸如深度学习算法的突破.硬件计算能力的提升.不断增长的大数据分析需求等.从2017年的迅猛发展,到2018年的持续火爆,国内外各个巨头公司如腾讯.阿里.百度.Google.微软.Facebook等均开始在人工智能领域投下重兵,毫无疑问,这一技术未来将会深…
1 TensorFlow基础 ---1.1TensorFlow概要 TensorFlow使用数据流图进行计算,一次编写,各处运行. ---1.2 TensorFlow编程模型简介 TensorFlow中的计算是一个有向图,每一个运算操作都是一个节点.每一个节点可以有任意多个输入和输出,在计算图的边中流动(flow)的数据被称为张量(tensor). 一个运算操作代表了一种类型的抽象运算,运算操作的所有属性必须被预先设置,或者能在创建计算图时被推断出来. Variable为变量,在创建时赋值,它可…
TensorFlow是什么? TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架.节点表示某种抽象的计算,边表示节点之间相互联系的张量. TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性:TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性:此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众. 系统概述 TensorFlow的系统结构以C API为界,将整个系统分…
初步介绍 Google 于2011年推出人工深度学习系统——DistBelief.通过DistBelief,Google能够扫描数据中心数以千计的核心,并建立更大的神经网络.Google 的这个系统将Google 应用中的语音识别率提高了25%,以及在Google Photos中建立了图片搜索,并驱动了Google的图片字幕匹配实验.但它很难被设置,没有开源. 2015年11月,第二代分布式机器学习系统Tensorflow在github上开源! 2016年4月,发布了分布式版本! 2017年1月…
新手入门完整教程进阶指南 API中文手册精华文章TF社区 INTRODUCTION 1. 新手入门 1.1. 介绍 1.2. 下载及安装 1.3. 基本用法 2. 完整教程 2.1. 总览 2.2. MNIST 数据下载 2.3. MNIST 入门 2.4. MNIST 进阶 2.5. TENSORFLOW 运作方式入门 2.6. 卷积神经网络 2.7. 字词的向量表示 2.8. 递归神经网络 2.9. 曼德布洛特(MANDELBROT)集合 2.10. 偏微分方程 3. 进阶指南 3.1. 总…