简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学,因为怎么看它们的相乘操作都逃不过$O(n^2)$,FFT是如何再减少复杂度的呢? 讲到FFT就不可避免地出现公式,但实际上它们都是比较容易理解的. 全局思路 设两个次数界均为$n$的多项式$\begin{aligned}A(x)&=a_0x^0+a_1x^1+a_2x^2+...+a_{n-1}x…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <queue> #include <vector> #include <map> #include &l…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧. 更改了一些以前不大正确的地方,又添加了一些推导,证明实在不会. 有一些公式,但个人觉得还是比较好理解.可能还会有错误,希望大佬友情指出. 最后,祝各位看官新年快乐. 回家过寒假去咯(虽然就\(4\)天\(qwq\)) 多项式 一个次数界为\(n\)的多项式\(A(x) = \sum_{i = 0…
FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首先介绍, 欧拉公式: 公式描述:公式中e是自然对数的底,i是虚数单位. 快速傅里叶变换(FFT)详解 前言: DFT:离散傅里叶变换—>O(n2)计算多项式乘法 FFT:快速傅里叶变换—>O(n∗log(n)O(n∗log⁡(n)计算多项式乘法 FNTT/NTT:快速傅里叶变换的优化版—>优…
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) 的流程,我也不准备长篇大论地分析\(FFT...\) 将系数表示法转换为点值表示法 \(O(n \log n)​\) 对于点值表示法直接进行操作 \(O(n)\) 将点值表示法转换为系数表示法 \(O(n \log n)​\) 这样的流程,最终复杂度是\(O(n \log n)\) 的,现在我们从最…
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 \[A(x)=\sum \limits_{i=0}^{n-1}a_ix^i\] \[=a_0+a_1x+a_2x^2+\dots+a_{n-1}x^{n-1}\] 点值表示法 将\(n\)个互不相同的\(x\)代入多项式,会得到\(n\)个互不相同的取值\(y\).设他们组成的\(n\)维向量分别…