spark (六) RDD算子(operator)】的更多相关文章

Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib)和图计算(GraphX). Spark是MapReduce的替代方案,而且兼容HDFS.Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足. 2. Spark-Shell spark-shell是Spark自带的交互式Shell程序,用户可以在该命令行下用scala编写spark…
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2.RDD属性 1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…
SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 SparkContext 的实例,并且只能创建一个: 利用 SparkContext 实例创建的对象都是 RDD,这是相对于 SparkSession 说的,因为 它创建的对象都是 DataFrame: 创建 sc class SparkContext(__builtin__.object): def __i…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
分别观察一下集合与算子的sortBy()的参数列表 普通集合的sortBy() RDD算子的sortBy() 结论:普通集合的sortBy就没有false参数,也就是说只能默认的升序排. 如果需要对普通集合中的元素需要升序排怎么办? 如图所示,我这调用的sortby()是List集合的方法了,不是算子,所以不能加false参数指定降序排,只能默认的升序排了,但是用reverse()反转就能达到一样的效果. 或者使用takeRight()方法取后十个也一样,注意的是后十个也是按升序排的…
RDD算子 #常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map…
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition.cache和persist都是懒执行的.必须有一个action类算子触发执行.checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系. 二.具体算子 1. cache 默认将RDD的数据持久化到内存中.cache是懒执行. chche (…
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2:RDD的属性: a.一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…