MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在Hadoop集群里里面的任意一个节点进行,只要该节点装了Hadoop并且连入了Hadoop集群) 2.job client 在收到这个请求以后呢,会找到JobTracker并且请求一个作业ID(Job ID).(根据我们的核心配置文件,可以很轻易的找到JobTracker) 3.通过HDFS 系统把…
转自 http://weixiaolu.iteye.com/blog/1474172前言:  前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了.学了很多东西,收获颇丰.可是开学后,大家都忙各自的事情,云计算方面的动静都不太大.呵呵~不过最近在胡老大的号召下,我们云计算团队重振旗鼓了,希望大伙仍高举“云在手,跟我走”的口号战斗下去.这篇博文就算是我们团队“重启云计算”的见证吧,也希望有更多优秀的文章出炉.汤帅,亮仔,谢总•••搞起来啊! 呵呵,下面我们进入正题,这篇文章主要…
目录:1.MapReduce作业运行流程2.Map.Reduce任务中Shuffle和排序的过程 1.MapReduce作业运行流程 流程示意图: 流程分析: 1.在客户端启动一个作业. 2.向JobTracker请求一个Job ID. 3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件.配置文件和客户端计算所得的输入划分信息.这些文件都存放在JobTracker专门为该作业创建的文件夹中.文件夹名为该作业的Job ID.JAR文件默认会有10个副本(ma…
MapReduce工作原理图文详解 一 MapReduce程序执行流程 程序执行流程图如下: 流程分析:1.在客户端启动一个作业.2.向JobTracker请求一个Job ID.3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件.配置文件和客户端计算所得的输入划分信息.这些文件都存放在JobTracker专门为该作业创建的文件夹中.文件夹名为该作业的Job ID.JAR文件默认会有10个副本(mapred.submit.replication属性控制):输…
为了阐述方便,我根据官方原理图另外制作了一幅图,如下图所示:VS/DR的体系结构: 我将结合这幅原理图及具体的实例来讲解一下LVS-DR的原理,包括数据包.数据帧的走向和转换过程. 官方的原理说明:Director接收用户的请求,然后根据负载均衡算法选取一台realserver,将包转发过去,最后由realserver直接回复给用户. 实例场景设备清单: 说明:我这里为了方便,client是与vip同一网段的机器.如果是外部的用户访问,将client替换成gateway即可,因为IP包头是不变的…
dataguru访问地址:http://f.dataguru.cn/?fromuid=99611 课程优惠码:C4B6  这段时间一直在dataguru(炼数成金)上学习<hadoop数据分析平台(第十四期)>,说说我对炼数成金的印象. 最开始听说dataguru是通过它的广告邮件中的链接,发送的对象是itpub会员,如果你也是itpub会员,应该也会收到这么一封邮件. 后来才知道dataguru的前身是是ITPUB培训,ITPUB的创始人正是dataguru的主讲师-黄志洪(同时也是分布式系…
炼数成金数据分析课程---14.Logistic回归 一.总结 一句话总结: 大纲+实例快速学习法 主要讲Logistic回归的原理及编程实现 1.事件的优势比(odds)是什么? 记y取1的概率是p=P(y=1|X),取0的概率 是1-p,取1和取0的概率之比为p/(1-p),称为事件的优势比(odds) 假设在p个独立自变量…
2016我定的目标就是要走出舒适区,进入学习区!为了少走弯路,节约学习的成本和时间,我选择了dataguru.看到心仪的课程毫不犹豫的就报了名. 分享了炼数成金邀请码,使用邀请码报名课程可以减免50%固定学费哦!http://www.dataguru.cn/invite.php?invitecode=AA62 课程优惠码:AA62 推荐理由有三: 1. 最近我在Dataguru学了<***>网络课程,挺不错的,你可以来看看!要是想报名,可以用我的优惠码 AA62 ,立减你50%的固定学费! 2…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
点击了解更多Python课程>>> Python数据分析[炼数成金15周完整课程] 课程简介: Python是一种面向对象.直译式计算机程序设计语言.也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定.Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用. Python语法简捷而清晰,具有丰富和强大的类库.它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起. 课程大纲: 第一部分. Python基础…