hdu3579 Hello Kiki(数论)】的更多相关文章

用到中国剩余定理,然后用扩展欧几里得算法求解. 这里有两个注意点,1.硬币数量不能为0或者负数 2.每个group数量有可能大于50,样例中就有 #include<stdio.h> #include<math.h> #include<stdlib.h> int M[10],A[10],n; int extEuclid(int p,int q,int &x,int &y)//扩展欧几里得算法 { int d,tmp; if(q==0){x=1;y=0;re…
解一元线性同余方程组(模数不互质) 结合看这俩blog讲得不错 http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/qq_27599517/article/details/50887445 上面这个对于理解为什么要用最小公倍数有帮助 http://blog.csdn.net/thearcticocean/article/details/49452859 思路就是不断两两合并,成一元线性同余方程,然后不断用扩欧求解 由于是最…
Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4517    Accepted Submission(s): 1746 Problem Description One day I was shopping in the supermarket. There was a cashier counting coins…
Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用Exgcd解之即可到答案,Exgcd即扩展欧几里得算法.他还能求乘法逆元,同余方程通解.没有你想得到的,只有你做不到的. 这里是对于两个算法的学习小记 Content 欧几里得算法 算法介绍 由百度百科得 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 从整数的除法可知:对任给二整…
Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5489    Accepted Submission(s): 2164 Problem Description One day I was shopping in the supermarket. There was a cashier counting coins…
题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余方程组了.我们可以得到 N 个方程:Mi*x+Ai=X.一些解释请看下面的代码. 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 using na…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lcm(a1,a2,a3,...an). 别的就没什么注意的了. #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h&…
先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mod c),对某个整数k有 a+k≡b+k (mod c) a-k≡b-k (mod c)  ak≡bk (mod c)  定理2: 若a≡b (mod c),d≡e (mod c),有 ax+dy≡bx+ey (mod c) ,x,y为任意整数,即同余式可以相加 ad≡be (mod c) ,即同余…
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据,看看有没有结论. 2 3 4 5 6 7 8 9 10 11 12 (人数) 1 2 2 3 3 3 4 4 4 4 4 (比赛数) 发现比赛数的增长成斐波那契.维护一个前缀和即可. #include <bits/stdc++.h> #define ll long long using names…
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation…