本文首发于个人博客 http://www.lijundong.com/image-and-line-height/ 今天在做一个静态页面时,图片底部出现一条 3px 高度的白边,既不是 margin 也不是 padding,找了好久没能解决,后来才发现与 line-height 相关,问题解决后查缺补漏,这里作下笔记. 解决问题之前需要理清楚几个概念,基线.line-height.vertical-align.inline 元素. 基线(baseline) 基线(Baseline) 是字体排印学…
P2032 「Poetize9」升降梯上 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道.一辆停在轨道底部的电梯.和电梯内一杆控制电梯升降的巨大手柄. Nescafe之塔一共有N层,升降梯在每层都有一个停靠点.手柄有M个控制槽,第i个控制槽旁边标着一个数Ci,满足 C1<C2<C3<……<CM.如果Ci>0,表示手柄扳动到该槽时,电梯将…
「BZOJ2654」tree 最小生成树+二分答案. 最开始并没有觉得可以二分答案,因为答案并不单调啊. 其实根据题意,白边的数目肯定大于need条,而最小生成树的白边数并不等于need(废话),可以二分将每条白边的权值+mid,这样就可以控制最小生成树中白边的条数, 对于一个mid,将所有的白边权值加mid,然后跑kruskal,求出最小生成树中白边的个数num以及此时的权值和ans(要减去mid*need),如果num=need直接输出ans,如果num<need 则让r=mid继续二分,如…
题目传送门 定义有特殊边相邻的格子颜色为黑,否则为白 可以看出,题目给出的限制条件的本质是如果两个小方块所在的格子 \(x\) 和 \(y\) 为两个相邻的黑格,那么 \(x\) 和 \(y\) 之间必然有一者满足其上下左右的所有白格内都没有小方块 即对于这样的 \(x\) 和 \(y\) ,需要以下三个条件至少满足一个: (1)用 \(\min(w_x,w_y)\) 的代价删除 \(x\) 和 \(y\) 上的其中一个小方块 (2)把与 \(x\) 相邻的白格内的小方块全部删掉 (3)把与 \…
「JSOI2013」哈利波特和死亡圣器 传送门 首先二分,这没什么好说的. 然后就成了一个恒成立问题,就是说我们需要满足最坏情况下的需求. 那么显然在最坏情况下伏地魔是不会走回头路的 因为这显然是白给 那么我们肯定需要在所有它可能去的下一个点都设置防御. 也就是说要对当前ta所在点的所有叶子设防. 那么我们就可以考虑 \(\text{DP}\) ,设 \(dp_i\) 表示在以 \(i\) 为根的子树中设防(注意这里不包括 \(i\) )还需要多少成员. 那么转移就是:\(dp_u = \max…
「CH6901」骑士放置 传送门 将棋盘黑白染色,发现"日"字的两个顶点刚好一黑一白,构成一张二分图. 那么我们将黑点向源点连边,白点向汇点连边,不能同时选的一对黑.白点连边. 当然,障碍点不会被连任何边. 那么我们每割掉一条黑白点之间的边,就会减少 \(1\) 的答案. 那么为了答案最大就是 $n \times m - t - $ 最小割. 参考代码: #include <cstring> #include <cstdio> #include <queu…
#1.0 简述 #1.1 动态树问题 维护一个森林,支持删除某条边,加入某条边,并保证加边.删边之后仍然是森林.我们需要维护这个森林的一些信息. 一般的操作有两点连通性,两点路径权值和等等. #1.2 实链剖分 先来回顾一下树链剖分,我们可以按照子树大小进行剖分(重链剖分),也可以按照子树高度进行剖分(长链剖分),使得原本的一棵树被分为若干条链,然后可以在链上通过如线段树这样的数据结构维护信息. 那么,存不存在一种剖分方式能够使我们更加得心应手地处理动态树问题?显然剖出的可能会不停变换,于是我们…
提要: url anchor (ajax) => javascript engine (1~4 articles) => java VM vs. python interpreter => pypy ## 前两天在写<HTTP 初步探究>时,碰见一个问题,放到了 stackoverflow 上,简单讲,就是对于/#wd=keyword 形式的链接,在 Fiddler 抓包里,并没有看见 wd=keyword 被上传到服务器,但最终,keyword 被正确处理了(HTTP 交互…
LOJ_2305_「NOI2017」游戏 _2-sat 题意: 给你一个长度为n的字符串S,其中第i个字符为a表示第i个地图只能用B,C两种赛车,为b表示第i个地图只能用A,C两种赛车,为c表示第i个地图只能用A,B两种赛车. 另有d(d<=8)个字符x,表示这个地图三种车都能用.有m个要求,(i,hi,j,hj)表示如果在第i场用了hi,在第j场必须用hj. 求一种满足要求的方案,若无解输出-1. 样例输入 3 1 xcc 1 1 A 2 B 样例输出 ABA 分析:先思考如果没有万能的x该怎…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘 力量帮助她们战胜地灾军团. 在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖.但在经历过那场所有史书都视为禁忌的"诸神黄昏之战"后,神杖上镶嵌的奥术宝石 已经残缺,神力也几乎消耗殆尽.精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
「luogu2569」[ZJOI2006]书架 题目大意 给定一个长度为 \(n\) 序列,序列中第 \(i\) 个元素有编号 \(a_i(a_i \in \Z \cap [1,n])\),需要支持五种操作: \(Top\) \(S\) --表示把编号为 \(S\) 的书放在最上面: \(Bottom\) \(S\)--表示把编号为 \(S\) 的书放在最下面: \(Insert\) \(S\) \(T\)--\(T \in \{-1,0,1\}\),若编号为 \(S\) 的书上面有 \(X\)…
「luogu2387」[NOI2014] 魔法森林 题目大意 \(n\) 个点 \(m\) 条边的无向图,每条边上有两个权值 \(a,b\),求从 \(1\) 节点到 \(n\) 节点 \(max\{a\}+max\{b\}\) 的最小值.图中可能有重边和自环.\((n \leq 5 \times 10^4 , m \leq 10^5)\) 一句话题解 考虑生成树 ( 过程类似 \(kruskal​\) ): 把边按照 \(a\) 从小到大排序,\(1-m\) 枚举边,设边连接的两点为 \(u…
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连续子序列的异或和等于 \(k\).数据范围均在 \([0,1e5]\). 本题不强制在线,故莫队. 记序列 \(a\) 的前缀异或和 \(pre\),用一个桶 \(t_i\) 记录当前查询区间内前缀异或和为 \(i\) 的数量. 代码如下: #include <cstdio> #include &…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a, b)\)(其中 \(a < b\))来表示一条端点分别为顶点 \(a, b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且…
题意 给你一颗 \(n\) 个点的树,每个点的度数不超过 \(20\) ,有 \(q\) 次修改点权的操作. 需要动态维护带权重心,也就是找到一个点 \(v\) 使得 \(\displaystyle \sum_{v} w_v \times \mathrm{dist}(u, v)\) 最小. 数据范围 \(n \le 10^5, q \le 10^5, \forall v, w_v \ge 0\) 题解 \(\text{Update on 2019.3.29:}\) 似乎可以二叉化就可以不用保证度…
好久没写数据结构了 来补一发 果然写的时候思路极其混乱.... LOJ #2116 Luogu P3241 题意 $ Q$次询问,求树上点的颜色在$ [L,R]$中的所有点到询问点的距离 强制在线 询问次数,树上点数约$ 2·10^5$ $ Solution$ 首先有 $ dist(x,y)=deep(x)+deep(y)-2·deep(lca(x,y))$ 显然这个等式的前两项很容易用前缀和什么的维护 只考虑第三项的话相当于是有边权并且强制在线的「LNOI2014」LCA 用同样的套路将$ d…
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直接维护一定是 \(O(n\log^3 n)\) 的,所以我当时选择了用 \(LCT\) 维护树上路径,跑起来比树剖可能都慢... 其实路径加单点查可以直接在 \(dfs\) 序上弄树状数组的,虽然也是 \(O(n\log^2 n)\) 的,但是肯定能通过此题... \(Code\ Below:\)…
「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以我们直接判断 \(a_{l-1}\) 和 \(a_r\) 是否相等就行了. 我们用二维线段树,一维存左端点 \(l\),一维存右端点 \(r\),里面存 \(a_l=a_r\) 的概率. 若 \(a\in [1,l-1],b\in [l,r]\),操作不在 \(b\),概率为 \(1-p\) 若 \…
「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数只跟子树中所有结点的 \(access\) 次数,可以树形 \(dp\).假设 \(x\) 有 \(m\) 个儿子,每个儿子的 \(access\) 次数为 \(A_i\),自己为 \(A_0\),问题转换成有 \(m+1\) 种颜色,问怎么使颜色不同的间隔最多.使 \(sum=\sum_{i=0}…
「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n\times m}\),所以对于每个点跑一遍最短路就行了. 时间复杂度 \(O(n\sqrt{n}\log n+q\sqrt{n})\) \(Code\ Below:\) #include <bits/stdc++.h> #define id(i,j) (((i)-1)*m+(j)) using…
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 \(x\) 欧拉或者 \(x\) 木大表示有 \(x\) 个欧拉或者木大. 为了简化内容我们现在用字母表示喊出的话. 我们用数字和字母来表示一个串,例如:2 a 3 b 表示的串就是 aabbb. 一开始漫画中什么话都没有,接下来你需要依次实现 \(n\) 个操作,总共只有 \(2\) 种操作:…
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\le L,1\le v\le n)\).这张图不是简单图,对于任意两个顶点 \((u_1,v_1),(u_2,v_2)\),如果 \(u_1<u_2\),则从 \((u_1,v_1)\) 到 \((u_2,v_2)\) 一共有 \(w(v_1,v_2)\) 条不同的边,如果 \(u_1\ge u_2\…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
「APIO2017」商旅 题目描述 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个商人.科巴有 \(N\) 个集市,集市用从 \(1\) 到 \(N\) 的整数编号,集市之间通过 \(M\) 条 单向 道路连接,通过每条道路都需要消耗一定的时间. 在科巴的集市上,有 \(K\) 种不同的商品,商品用从 \(1\) 到 \(K\) 的整数编号.每个集市对每种商品都有自己的定价,买入和卖出商品的价格可以是不同的.并非…
LOJ2557. 「CTSC2018」组合数问题 这道题是我第一道自己做完的题答题.考场上面我只拿了41分,完全没有经验.现在才发现其实掌握了大概的思路还是不难. 首先模拟退火,通过了1,2,6,9,10五个测试点. #include<bits/stdc++.h> using namespace std; #define REP(i,st,ed) for(register int i=st,i##end=ed;i<=i##end;++i) #define DREP(i,st,ed) fo…