R语言ggplot2 简介】的更多相关文章

ggplot2是一个绘制可视化图形的R包,汲取了R语言基础绘图系统(graphics) 和l attice包的优点,摒弃了相关的缺点,创造出来的一套独立的绘图系统: ggplot2 有以下几个特点: 1) 图形映射, 自动化的将数据映射到图形上: 2) 图层叠加, 将不同形状的图表视为图层(layer),  可以方便的进行叠加 3)提供了范围控制(scale), 坐标系转换(coord), 分面(facet)等特性: 先看一个最简单的例子,用ggplot2 绘制一副散点图: 代码示例: libr…
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
相比r语言自带软件包,ggplot2有以下特色 图形语法的核心:统计图形是数据向几何对象属性的一个映射.…
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5…
ggplot2 是一套独立的绘图系统,在一个完整的ggplot2的图表中,会有下面几个概念: 1) plot 2) panel 3) strip 4) legend 所有这些元素都会出现在图表中 代码示例: ggplot(mpg, aes(displ, cty, colour = cyl)) + geom_point() + facet_grid(. ~ cyl) + theme(plot.background = element_rect(fill = "green", colour…
案例 ggplot(head(age_data,10),aes(x=reorder(Country,age_median),y=age_median))+ geom_bar(aes(fill=Country),stat='identity')+ geom_text(aes(label=age_median),hjust=1.4,colour='white')+ coord_flip()+ theme_minimal()+ theme(legend.position='none') 相关知识1:画…
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()…
整理了一下最近对协同过滤推荐算法中的皮尔森相似度计算,顺带学习了下R语言的简单使用,也复习了概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 因为这里每个数都是等概率的,所以就当做是数组或向量中所有元素的平均数吧.可以使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance总体方差和sample variance样本方差,区别是总体方差除以N,样本方差除以N-1. 数理统计中常用样本方差,R语言的var()…
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图…
目录 1.基本概念 2.选择机器学习算法 3.使用R进行机器学习 1.基本概念 机器学习:发明算法将数据转化为智能行为 数据挖掘 VS 机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务.后者是前者的先期准备 过程:数据-->抽象化-->一般化.或者:收集数据--推理数据--归纳数据--发现规律 抽象化: 训练:用一个特定模型来拟合数据集的过程 用方程来拟合观测的数据:观测现象--数据呈现--模型建立.通过不同的格式来把信息概念化 一般化: 一般化:将抽象化的知识转换成可用于行动的形式…