KNN-综合应用】的更多相关文章

K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
看完一节<机器学习实战>,算是踏入ML的大门了吧!这里就详细讲一下一个demo:使用kNN算法实现手写字体的简单识别 kNN 先简单介绍一下kNN,就是所谓的K-近邻算法: [作用原理]:存在一个样本数据集合.每个样本数据都存在标签.输入没有标签的新数据后,将新数据的每个特征与样本集数据的对应特征进行比较,然后算法提取样本集中最相似的分类标签.一般说来,我们只选择样本数据集中前k个最相似的数据,最后,选择这k个相似数据中出现次数最多的分类,作为新数据的分类. 通俗的说,举例说明:有一群明确国籍…
K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类.这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东西是一个比较相近的类型,而KNN算法是用来做归类的,也就是说,有一个样本空间里的样本分成几个类型,然后,给定一个待分类的数据,通过计算…
knn算法是人工智能的基本算法,类似于语言中的"hello world!",python中的机器学习核心模块:Scikit-Learn Scikit-learn(sklearn)模块,为Python语言实现机器学习的核心模块,其包含了大量的算法模型函数API, 可以让我们很轻松地创建.训练.评估 算法模型.同时该模块也是Python在人工智能(机器学习)领域的基础应用模块. 核心依赖模块: NumPy:pip install –U numpy Scipy:pip install –U…
摘要:PCA为非监督分类方法,常用于数据降维.为监督分类数据预处理,本例采用PCA对人脸特征提取先做降维处理,然后使用KNN算法对图片进行分类 ##1.PCA简介 设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法.在本例中,主要用于降维处理. PCA 官方文档 2.KNN 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算…
先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No description provided numeric V2 No description provided numeric V3 No description provided numeric V4 No description provided numeric V5 No description…
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那就是总共投料要投料5000*1.03=5150pcs. 而这个多投的订单标准,每家工厂都可能不一样的,因为加投比例,需要结合订单数量,层数,铜厚,线宽,线距, 表面工艺,HDI阶数,孔径比,特殊工艺,验收标准等等 ,所以工艺难度越大,加投量也是越多. 在这里以K最近邻算法(KNN)进行加投率的模似…
1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法,或者说K近邻算法,应该算是机器学习中众多分类算法最好理解的一个了.古语有云:物以类聚,人以群分.没错,KNN算法正是这一思想为核心,对数据进行分类. 而所谓K近邻,意思是对于每一个待分类样本,都可以以与其最近的K个样本点的多数分类来来进行划分.举个例子,办公室新来了一个同事,他的位置边上坐着的10个…
https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经网络,O-SVM可以搞定 https://www.reddit.com/r/MachineLearning/comments/7t3xei/d_detecting_unknown_classes/ reddit上的讨论,有人专门提到svm是最适合解决这个问题的模型. I've spent lots…