一.简介 folium是js上著名的地理信息可视化库leaflet.js为Python提供的接口,通过它,我们可以通过在Python端编写代码操纵数据,来调用leaflet的相关功能,基于内建的osm或自行获取的osm资源和地图原件进行地理信息内容的可视化,以及制作优美的可交互地图.其语法格式类似ggplot2,是通过不断添加图层元素来定义一个Map对象,最后以几种方式将Map对象展现出来. 而在Map对象的生成形式上,可以在定义所有的图层内容之后,将其保存为html文件在浏览器中独立显示,也可…
一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些基本示例来展开说明: 二.处理GeoJSON和TopoJSON数据 2.1 GeoJSON数据 GeoJSON是语法规则符合JSON文件的,专用于表示地理信息的一种JSON文件,其在JSON语法的基础上,内部又有着一套固定的语法规则.在folium中我们使用folium.GeoJson()方法来为已…
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原生ggplot2图像进行美化,掌握它之后你就可以创作出更具特色和美感的数据可视化作品. 二.基础内容 2.1 安装 不同于常规的R包,ggthemr并没有在CRAN上发布,因此我们需要使用devtools中的install_github()直接从github上安装它,参照github上ggthemr…
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib.requests这样的请求库来将我们的程序模拟成一个请求网络服务的一端,来直接取得设置好的url地址中朴素的网页内容,再利用BeautifulSoup或pyspider这样的解析库来对获取的网页内容进行解析,在初级篇中我们也只了解到如何爬取静态网页,那是网络爬虫…
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹配的基本格式如下: data match { case ... => 执行语句 case ... => 执行语句 case _  => 执行语句 } 其中,data表示将要进行模式匹配的对象,match是模式匹配的关键字,后面紧跟的{}中包含若干条匹配的方向,且只会匹配其中满足条件的第一条:…
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再…
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传…
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方便简洁的方法,用于对单列.多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map().apply().applymap().groupby().agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们…
一.简介 xpath作为对网页.对xml文件进行定位的工具,速度快,语法简洁明了,在网络爬虫解析内容的过程中起到很大的作用,除了xpath的基础用法之外(可参考我之前写的(数据科学学习手札50)基于Python的网络数据采集-selenium篇),xpath中还存在着非常之多的进阶用法,本文将对笔者日常使用中积累的xpath进阶用法进行总结并举例说明: 二.xpath进阶用法 本文以http://quotes.toscrape.com/示例页面,首先抓取网页源码并利用etree解析: impor…
一.简介 经常利用Python进行数据可视化的朋友一定用过或听说过plotly这样的神器,我在(数据科学学习手札43)Plotly基础内容介绍中也曾做过非常详细的介绍,其渲染出的图像以浏览器为载体,非常精美,且绘制图像的自由程度堪比ggplot2,其为R也提供了接口,在plotly包中,但对于已经习惯用ggplot2进行可视化的朋友而言,自然是不太乐意转向plotly的学习,有趣的是plotly的R包中有着函数ggplotly(),可以将ggplot2生成的图像转换为交互式的plotly图像,且…