题目描述: 输入正整数K1(K1<=5000),找一个12位正整数K2使得K1K2=K2(mod 1012). 解题思路: 压缩映射原理:设X是一个完备的度量空间,映射ƒ:Χ→Χ 把每两点的距离至少压缩λ倍,即d(ƒ(x),ƒ(y))≤λd(x,y),这里λ是一个小于1的常数,那么ƒ必有而且只有一个不动点,而且从Χ的任何点x0出发作出序列x1=ƒ(x0),x2=ƒ(x1),...,xn=ƒ(x(n-1)),...,这序列一定收敛到那个不动点. 题目要求解的方程形式是f(K2)=K2,很直接地就想…