http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
#include <iostream>#include <opencv2/opencv.hpp>#include <math.h> using namespace std;using namespace cv; //拉普拉斯 边缘计算void TLaplacian() { Mat img1, img2,gray_img,edge_img; char* win1 = "window1"; char* win2 = "window2"…
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na…
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度算子   对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗).对于右图,结论相反.常数部分为零.用来检测边是否存在. 梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量: 计算这个向量的大小为: 梯度的方向角为: Sobel算子 sobel算…
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这一特性去寻找图像的边缘. 注意有一个问题,二阶求导为0的位置也可能是无意义的位置 拉普拉斯算子推导过程 以x方向求解为例: 一阶差分:f'(x) = f(x) - f(x - 1) 二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x…
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1[] = "window1"; char win2[] = "window2"; char win3[] = "window3"; Mat img1, img2, img3…
1.canny算子 Canny边缘检测算子是John F.Canny于 1986 年开发出来的一个多级边缘检测算法.更为重要的是 Canny 创立了边缘检测计算理论(Computational theory ofedge detection),解释了这项技术是如何工作的.Canny边缘检测算法以Canny的名字命名,被很多人推崇为当今最优的边缘检测的算法. 其中,Canny 的目标是找到一个最优的边缘检测算法,让我们看一下最优边缘检测的三个主要评价标准: 1.低错误率: 标识出尽可能多的实际边缘…
sobel算子 - sophia_hxw - 博客园http://www.cnblogs.com/sophia-hxw/p/6088035.html #1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2,边缘.边界和sobel算子 这个可以自己去google或者百度找定义,边缘和边界不一样,两者没有必然联系也并非毫无联系.因为现实世界的三维空间映射到图…
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; //拉普拉斯处理 cv::Mat laplaceMat(cv::Mat imgParam); int main(int argc, char *argv[]) { Mat image = imread(); if (image.empty()) { std::cou…
---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就是像素值差别很大,比如X1=20和X2=200,这两个像素差值180,在图像的显示就非常明显,这样图像的边缘不就体现出来了?但是问题来了,一幅图像给你,如果一个像素一个像素对比, 1.周围像素差别不大的怎么办? 2.周围相差很大,但是很多的怎么办? 3.怎么样才能更好地区别图像的边缘呢? 比如5-2…