解密数仓的SQL ON ANYWHERE技术】的更多相关文章

本文来自腾讯云技术沙龙,本次沙龙主题为构建PB级云端数仓实践 在现代社会中,随着4G和光纤网络的普及.智能终端更清晰的摄像头和更灵敏的传感器.物联网设备入网等等而产生的数据,导致了PB级储存的需求加大. 但数据保留下来并不代表它真的具有利用价值,曾经保存的几TB的日志,要么用来做做最简单的加减乘除统计,要么就在日后出现问题了,扒出日志堆找证据.你的影视库里面可以下载储存成千上万部影片,但不代表你真的能全部看完. 如何将手里现有的数据变得更具有价值?一些营销云已经可以做到毫秒级响应做到精准投放广告…
一.迟到的事实简介 数据仓库通常建立于一种理想的假设情况下,这就是数据仓库的度量(事实记录)与度量的环境(维度记录)同时出现在数据仓库中.当同时拥有事实记录和正确的当前维度行时,就能够从容地首先维护维度键,然后在对应的事实表行中使用这些最新的键.然而,各种各样的原因会导致需要ETL系统处理迟到的事实数据.例如,某些线下的业务,数据进入操作型系统的时间会滞后于事务发生的时间.再或者出现某些极端情况,如源数据库系统出现故障,直到恢复后才能补上故障期间产生的数据.        在销售订单示例中,晚于…
〇.概述 1.实现内容 使用Hive SQL编程,构造分层离线数仓 并可以通过Quick Bi进行展示 2.过程 (1)数据接⼊到ODS层 (2)进⾏ODS到DWD层数据开发 (3)进⾏ODS到DIM层数据开发 a.创建 [电商_商家维度表_⽇]表 b.创建[电商_商品维度表_⽇]表 c.创建[电商_⽤⼾维度表_⽇]表 (4)进⾏DWS层数据开发 (5)进⾏ADS应⽤层的数据开发 a.看板_总指标看板统计 b.看板_商品销售地域分析 c.看板_商品销量排行 3.逻辑模型 4.示例数据 一.数据导…
一.周期快照简介 周期快照事实表中的每行汇总了发生在某一标准周期,如一天.一周或一月的多个度量.其粒度是周期性的时间段,而不是单个事务.周期快照事实表通常包含许多数据的总计,因为任何与事实表时间范围一致的记录都会被包含在内.在这些事实表中,外键的密度是均匀的,因为即使周期内没有活动发生,通常也会在事实表中为每个维度插入包含0或空值的行.        周期快照是在一个给定的时间对事实表进行一段时期的总计.有些数据仓库用户,尤其是业务管理者或者运营部门,经常要看某个特定时间点的汇总数据.下面在示例…
一.OLAP简介 1. 概念 OLAP是英文是On-Line Analytical Processing的缩写,意为联机分析处理.此概念最早由关系数据库之父E.F.Codd于1993年提出.OLAP允许以一种称为多维数据集的结构,访问业务数据源经过聚合和组织整理后的数据.以此为标准,OLAP作为单独的一类技术同联机事务处理(On-Line Transaction Processing,OLTP)得以明显区分.        在计算领域,OLAP是一种快速应答多维分析查询的方法,也是商业智能的一个…
[摘要] CarbonData将存储和计算逻辑分离,通过索引技术让存储和计算物理上更接近,提升CPU和IO效率,实现超高性能的大数据分析.以CarbonData为融合数仓的大数据解决方案,为金融转型打造新一代数仓引擎. 金融领域随着数据与日俱增(如国内某大行,平均3亿笔业务/天,峰值6亿/天):业务驱动下的数据分析灵活性要求越来越高,不同业务的数据分系统构建,导致冗余严重,缺乏高效.统一的融合数仓,阻碍企业快速转型.如何对浪涌式的数据进行整合分析,发挥最大价值,金融机构对数据的处理提出了相应诉求…
声明 本文中介绍的非功能性规范均为建议性规范,产品功能无强制,仅供指导. 参考文献 <大数据之路——阿里巴巴大数据实践>——阿里巴巴数据技术及产品部 著. 背景及目的 数据对一个企业来说已经是一项重要的资产,既然是资产,肯定需要管理.随着业务的增加,数据的应用越来越多,企业在创建的数仓过程中对数据的管理也提出了更高的要求,而数据质量也是数仓建设过程不容忽视的环节.本文针对MaxCompute数仓建设过程中如何做数据质量给出规范建议,为实际数据治理提供依据及指导. 数据质量保障原则 评估数据质量…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…
企业级数仓架构设计与选型的时候需要从开发的便利性.生态.解耦程度.性能. 安全这几个纬度思考.本文作者:惊帆 来自于数据平台 EMR 团队 前言 Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念.Hive 有 JDBC 客户端,支持标准 JDBC 接口访问的 HiveServer2 服务器,管理元数据服务的 Hive Metastore,以及任务以 MapReduce 分布式任务运行在…