Batch Normalization Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果. 众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等.这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面.BN算法就可以完美的解决这些问题. 当我们使用了BN算法,我…
Anaconda指的是一个开源的Python发行版本,其主要优点如下: Anaconda默认安装了常见的科学计算包,用它搭建起Python环境后不用再费时费力安装这些包: Anaconda可以创建互相隔离的虚拟环境,可以在不同环境下制定不同版本的Python,安装不同依赖包,再也不用纠结多个Python版本究竟安装哪个: 一.本次安装所需的基本软件 1. Anaconda3-5.3.1-Windows-x86_64 2. pycharm-community-2019.3.4 3. python3…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
原文链接 https://arxiv.org/pdf/1603.09025.pdf Covariate 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果. whiting : https://blog.csdn.net/elaine_bao/article/details/50890491 <Batch Normalization: Accelerating Deep Network Training by Reducing Internal Cova…
1. 摘要 BN 是一个广泛应用的用于快速稳定地训练深度神经网络的技术,但是我们对其有效性的真正原因仍然所知甚少. 输入分布的稳定性和 BN 的成功之间关系很小,BN 对训练过程更根本的影响是:它让优化更加平滑.这种平滑让梯度更加可预测更加稳定,从而加速训练. 2. BN 和 internal covariate shift 在原始论文 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Cov…
第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止,你已经了解到,神经网络的改变会涉及到许多不同超参数的设置.现在,对于超参数而言,你要如何找到一套好的设定呢?在本节中,我想和你分享一些指导原则,一些关于如何系统地组织超参调试过程的技巧,希望这些能够让你更有效的聚焦到合适的超参设定中. 关于训练深度神经网络最难的事情之一是你要处理的参数的数量,下面粗…
Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dropout.当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合.为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能. Droupout是一种针对深度学习广泛应用的正则化技术.在每次迭代时随机关闭一些神经单元,随着迭代的进行,由于其他神经元可能在任何时候都被关闭,因此神经元对…
目录 一.更换官方源 二.安装Pytorch+CUDA(python版本) 三.YOLO V5 配置与验证 四.数据集测试 五.小结 不想看前面,可以直接跳到标题: 一.更换官方源 在 YOLO V5 官方gayhub页面(https://github.com/ultralytics/yolov5),看到如下内容: 1 Requirements 2 Python 3.8 or later with all requirements.txt dependencies installed, incl…
以下基于"WIN7(64位)+Visual Studio 2010+CUDA7.5". 系统:WIN7,64位 开发平台:Visual Studio 2010 显卡:NVIDIA GeForce GTX 850M CUDA版本:7.5 一.安装CUDA7.5 Step.1: 略 Step.2: 略 Step.3: 略 Step.4: 略 Step.5: 略 Step.6: 略 二.配置 Step.7: 安装完成后,配置环境变量. 注意,在安装CUDA Toolkit的过程中,已经自动设…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…