我们已经学习了怎样使用reshape函数,现在来学习一下怎样将数组展平. (1) ravel 我们可以用ravel函数完成展平的操作: In: b Out: array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9,10,11]], [[12,13,14,15], [16,17,18,19], [20,21,22,23]]]) In: b.ravel() Out: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,…
ndarray支持在多维数组上的切片操作.为了方便起见,我们可以用一个省略号(...)来 表示遍历剩下的维度. (1) 举例来说,我们先用arange函数创建一个数组并改变其维度,使之变成一个三维数组: b=np.arange(24).reshape(2,3,4) b.shape (2L, 3L, 4L) b array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], […
第一章 NumPy快速入门 首先,我们将介绍如何在不同的操作系统中安装NumPy和相关软件,并给出使用NumPy的简单示例代码. 然后,我们将简单介绍IPython(一种交互式shell工具). 如前言所述,SciPy和NumPy有着密切的联系,因此你将多次看到SciPy的身影. 在本章的末尾,我们将告诉你如何利用在线资源,以便你在受困于某个问题或不确定最佳的解题方法时,可以在线获取帮助.   本章涵盖以下内容: 1.在Windows.Linux和Macintosh操作系统上安装Python,S…
NumPy是Python的一个高性能科学计算和数据分析基础库,提供了功能强大的多维数组对象ndarray.jupyter notebook快速执行代码的快捷键:鼠标点击选中要指定的代码框,Shift + Enter组合键直接执行代码框中的全部代码.              Alt + Enter组合键执行完代码框中的代码在代码框的下面再添加一个空代码框. 1.创建数组 #引入numpy,并重命名为np,方便使用import numpy as np 1.1.使用numpy内置的array函数创建…
排序: numpy.lexsort(): numpy.lexsort()是个排字典序函数,因为很有意思,感觉也蛮有用的,所以单独列出来讲一下: 强调一点,本函数只接受一个参数! import numpy as np a = np.array([1,2,3,4,5]) b = np.array([50,40,30,20,10]) c = np.lexsort((a,b)) print(list(zip(a[c],b[c]))) [(5, 10), (4, 20), (3, 30), (2, 40)…
1.使用array创建数组 b = array([2, 3, 4])print bprint b.dtype 2.把序列转化为数组 b = array( [ (1.5,2,3), (4,5,6) ] )print b 3.函数 function 创建一个全是0的数组,函数 ones 创建一个全1的数组,函数empty 创建一个内容随机并且依赖与内存状态的数组.默认创建的数组类型(dtype)都是float64. a=zeros( (3,4) )print a b=ones( (2,3,4), d…
数据生成: import numpy as np import matplotlib.pyplot as plt func = np.poly1d(np.array([,,,])) func1 = func.deriv(m=) # 求一阶导数 func2 = func.deriv(m=) # 求二阶导数 x = np.linspace(-,,) y = func(x) y1 = func1(x) y2 = func2(x) '''正常绘图''' plt.plot(x,y,'ro',x,y1,'g…
数组是Numpy操作的主要对象,也是python数据分析的主要对象,本系列文章是本人在学习Numpy中的笔记. 文章中以下都基于以下方式的numpy导入: import numpy as np from numpy import * 1.普通数组的创建——np.arange(), np.array(), (1) arange()建立是顺序数组,函数原型:arange([start,]stop[,step],dtype=None) 其中start参数如果省略,则表示从0开始,默认的dtype为fl…
NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分析>第四版(华东师范大学数学系).<概率论与数理统计>(陈希孺,中科大出版).<概率论与数理统计>第二版(茆诗松.程依明等编).<组合最优化:理论与方法>(现代数学译丛23).笔记三主要操作股票价格数据. 股票价格数据通常包括开盘价.最高价.最低价和收盘价.…
NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分析>第四版(华东师范大学数学系).<概率论与数理统计>(陈希孺,中科大出版).<概率论与数理统计>第二版(茆诗松.程依明等编).<组合最优化:理论与方法>(现代数学译丛23).笔记二主要记录数据获取,沪深证券市场的A股股票数据. 获取的股票数据周期包括5分钟.15分钟…