Code: #include<cstdio> using namespace std; typedef long long LL; const int maxn=1000000+2; LL mod; int MAXN; struct comb{ LL fac[maxn]; LL quick_pow(LL base,LL k) { LL ans=1; while(k) { if(k&1)ans=(ans*base)%mod; k/=2; base=(base*base)%mod; } r…
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 [输出格式] 共T行,每行一个整数表示答案. [输入样例] 21 2 52 1 5 [输出样例] 33 >>>>分析 emmmm模板题还是不用分析了吧 卢卡斯定理解决的就是组合数C(n,m…
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ p$ $lucas$定理: $C_{n}^{m}=C_{n\%p}^{m\%p}\times C_{n/p}^{m/p}\mod p$ 相当于把$n,m$写成$p$进制数($A_1,A_2\dotso A_k$),($B_1,B_2\dotso B_k$) $C_{n}^{m}=C_{A_1}^{…
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm​ mod p 保证P为prime C表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 输出格式: 共T行,每行一个整数表示答案. 输入输出样例 输入样例#1: 复制 2 1…
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) 表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数 \(T( T\le 10 )\),表示数据组数 第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上 输出格式: 共T行,每行一个整数表示答案. 输入输出样例 输入样例#1: 2 1 2 5 2 1…
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[n-2])*…*C(a[0],b[0])模p同余 #include<iostream> #include<cstring> #include<cstdio> using namespace std; #define int long long int…
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: DFS序列,线段树/树状数组,LCA(最近公共祖先) DFS序列确保你能听懂以下环节,线段树/树状数组是维护序列的有力工具,而LCA涉及树上的很多基本问题. 经常会遇到这样的题目: 对于一棵树,给x到y的路径上的点/边都做一个操作,并且查询x到y的路径上的点/边的值. 如果不是x到y的路径,而是节点…
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记.如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B).当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>.绝对连通区域是指…
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数,那么 \[ans=\dfrac{1}{(nml)!}\sum\limits_{i=k}^{\min(n,m,l)}f_i(-1)^{i-k}\dbinom{i}{k} \] 考虑怎么求 \(f_i\),首先我们肯定要选出 \(i\) 个极大的位置.我们假设 \(g_i\) 为选出 \(i\) 个极大的位置的…
洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并且他有一部车,车只能在海拔高度大于降水量的道路上行驶,如果某一条边的海拔高度小于等于降水量,那么小\(Y\)就必须下车步行,现在有\(q\)次询问,每次询问从目标点到\(1\)要步行的最短距离.强制在线. 题解: 这题我采用的做法是kruskal重构树. 可能大家对kruskal重构树并不是很熟悉,…