np.random.shuffle(x)的用法】的更多相关文章

此函数主要是通过改变序列的内容来修改序列的位置.此函数只沿多维数组的第一个轴移动数组.子数组的顺序已更改,但其内容保持不变. 参数 x:即将被打乱顺序的list 返回值 无…
import numpy as np import matplotlib.pyplot as plt def fix_seed(seed=1): #重复观看一样东西 # reproducible np.random.seed(seed) # make up data建立数据 fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.ran…
numpy.random.shuffle(x) Modify a sequence in-place by shuffling its contents. Parameters: x : array_like The array or list to be shuffled. Returns: None Examples >>> >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>>…
来自:https://blog.csdn.net/brucewong0516/article/details/79012233 将数组打乱随机排列 两种方法: np.random.shuffle(x):在原数组上进行,改变自身序列,无返回值. np.random.permutation(x):不在原数组上进行,返回新的数组,不改变自身数组. 1. np.random.shuffle(x) (1).一维数组 import numpy as np arr = np.arange(10) print(…
在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的array import numpy as np a = np.random.randn(2,4) #4*2矩阵 print(a) b = np.ra…
np.random的随机数函数(1) 函数 说明 rand(d0,d1,..,dn) 根据d0‐dn创建随机数数组,浮点数, [0,1),均匀分布 randn(d0,d1,..,dn) 根据d0‐dn创建随机数数组,标准正态分布 randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high) seed(s) 随机数种子, s是给定的种子值 np.random.rand import numpy as np a = np.random.ran…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((, )) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[,)之间的随机浮点数或N维浮点数组. 3.numpy.random.…
转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20)) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[0,1)之间的随机浮点数或N维浮点数组. 3.numpy.random.randn()函…
np.random.choice的用法 2018年01月15日 10:18:23 qfpkzheng 阅读数:6306 标签: 自己学习 更多 个人分类: 总结   import numpy as np # 参数意思分别 是从a 中以概率P,随机选择3个, p没有指定的时候相当于是一致的分布 a1 = np.random.choice(a=5, size=3, replace=False, p=None) print(a1) # 非一致的分布,会以多少的概率提出来 a2 = np.random.…
1.np.random.random()函数参数 np.random.random((1000, 20)) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[0,1)之间的随机浮点数或N维浮点数组. 3.numpy.random.randn()函数用法: numpy.random.randn(d0, d1, ..., dn): 生成一个浮点…