使用TensorFlow实现回归预测】的更多相关文章

在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. 用随机的值填充a,b并计算误差,误差采用上文所使用SSE(和方差) 1.4. 计算误差梯度 1.5. 调整参数直到SSE参数最小 1.6. 概念 1.6.1. 简单线性回归 1.6.2. 梯度下降 梯度 步长 1.1. 准备工作 从网上得到的数据可以看到房屋价格与房屋尺寸的一个对比关系,如下图:…
这一节使用TF搭建一个简单的神经网络用于回归预测,首先随机生成一组数据 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt tf.set_random_seed(42) np.random.seed(42) x = np.linspace(-1,1,100)[:,np.newaxis] #<==>x=x.reshape(100,1) noise = np.random.normal(0,0.1,s…
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE = 'fire_theft.xls' # 1.read from data file book=xlrd.open_workbook(DATA_FILE,encoding_override="utf-8") sheet=book.sheet_by_index(0) data=np.asa…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑. 前期准备之Keras的scikit-learn接口包装器 Git地址:https://github…
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如: tensorflow笔记:多层LSTM代码分析 但是感觉这些例子还是太复杂了,所以这里写了个比较简单的版本,虽然不优雅,但是还是比较容易理解. 如果你想了解 LSTM 的原理的…
Ref: http://blog.csdn.net/u014595019/article/details/52759104 Time: 2min Successfully downloaded train-images-idx3-ubyte.gz bytes. Extracting MNIST_data/train-images-idx3-ubyte.gz Successfully downloaded train-labels-idx1-ubyte.gz bytes. Extracting M…
import tensorflow as tf import numpy as np from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data config=tf.ConfigProto() config.gpu_options.allow_growth=True sess=tf.Session(config=config) mnist = input_data.re…
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py import tensorflow as tf import numpy as np def train_model(): # prepare the data x_data = np.random.rand(100).astype(np.float32) print (x_data) y_data…
[代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tensorflow-yolov3-master ├── checkpoint //保存模型的目录 ├── convert_weight.py//对权重进行转换,为了模型的预训练 ├── core//核心代码文件夹 │ ├── backbone.py │ ├── common.py │ ├── config…
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3.求损失函数,误差为均方误差 4.梯度下降去优化损失过程,指定学习率 2.Tensorflow运算API: 1.矩阵运算:tf.matmul(x,w) 2.平方:tf.square(error) 3.均值:tf.reduce_mean(error)…
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该文档的上线为国内外使用中文学习TensorFlow的工程及研究人员提供了更快的访问速度和更好的阅读体验,助力中国AI技术与世界同步.在线阅读地址为:http://wiki.jikexueyuan.com/project/tensorflow-zh/ 众所周知,人工智能将是未来发展的大方向,从国家到全…
TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或gedit比较顺手,那也可以的啦.我们既然已经安装了anaconda,那么它里面自带一个还算不错的编辑器,名叫spyder,用起来和matl…
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里…
pading :SAME,VALID 区别  http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法:http://www.cnblogs.com/zhizhan/p/5971423.html 卷积神经网络中w*x得到的是一个feature map,然而bias是一个值,也就是每个feature map只对应一个数值的bias(猜测feature map上面的每一个元素都+bias) tensor…
本文是在阅读官方文档后的一些个人理解. 官方文档地址:https://www.tensorflow.org/versions/r0.12/get_started/basic_usage.html#basic-usage 关于tensor和op的理解 Nodes in the graph are called ops (short for operations). An op takes zero or more Tensors, performs some computation, and pr…
谷歌内部--Borg Google Brain跑在数十万台机器上 谷歌电商商品分类深度学习模型跑在1000+台机器上 谷歌外部--Kubernetes(https://github.com/kubernetes/kubernetes) Kubernetes为Borg的开源版,是一个容器集群管理系统 Tensorflow原生态支持并行化的跑在kubernetes上(https://github.com/caicloud/tensorflow-demo)…
tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编译tensorflow还不支持gcc5.4,我使用的是gcc5.3,使用bazel工具进行编译时遇到上面这个问题,解决方法,将/usr/bin/as放到/usr/local/bin/gcc,和gcc 5.3的版本同个目录下./usr/bin/as不知道是由那个版本的GCC装上的,还是说系统自带. 由…
验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机器难. 上图是常见的字符验证码,还有一些验证码使用提问的方式. 我们先来看看破解验证码的几种方式: 人力打码(基本上,打码任务都是大型网站的验证码,用于自动化注册等等) 找到能过验证码的漏洞 最后一种是字符识别,这是本帖的关注点 我上网查了查,用Tesseract OCR.OpenCV等等其它方法都…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.04 python 2.7 Flask tensorflow GPU 版本 安装nvidia driver 经过不断踩坑的安装,终于google到了靠谱的方法,首先检查你的NVIDIA VGA card model sudo lshw -numeric -C display 可以看到你的显卡信息,比如…
AI这个概念好像突然就火起来了,年初大比分战胜李世石的AlphaGo成功的吸引了大量的关注,但其实看看你的手机上的语音助手,相机上的人脸识别,今日头条上帮你自动筛选出来的新闻,还有各大音乐软件的歌曲"每日推荐"--形形色色的AI早已进入我们生活的方方面面.深刻的影响了着我们,可以说,这是一个AI的时代. 其实早在去年年底,谷歌就开源了其用来制作AlphaGo的深度学习系统Tensorflow,相信有不少同学曾经对着这款强大的机器学习系统蠢蠢欲动,但虽然有关Tensorflow的教程其实…
windows中不能直接使用Tensorflow,所以得费点劲.(2016.11.29更新,TensorFlow 0.12 中已加入初步的 Windows 原生支持) 先是直接使用了<Deep Learning>中推荐的已经配置好Tensorflow和所有作业文件的Docker容器(貌似得翻-墙),这个方法其实很方便,用来学习Tensorflow和这个课程已经足够了,但是不够灵活. 最后在虚拟机ubuntu上安装了Tensorflow,安装配置远程jupyter notebook(以前都叫ip…
# For CPU-only version $ pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl # For GPU-enabled version (only install this version if you have the CUDA sdk installed) $ pip install https://storag…
https://github.com/chenghuige/tensorflow-exp/blob/master/examples/sparse-tensor-classification/ tensorflow-exp/example/sparse-tensor-classification/train-validate.py 当你需要train的过程中validate的时候,如果用placeholder来接收输入数据 那么一个compute graph可以完成这个任务.如果你用的是TFRec…
#写libsvm格式 数据 write libsvm     #!/usr/bin/env python #coding=gbk # ============================================================================== # \file gen-records.py # \author chenghuige # \date 2016-08-12 11:52:01.952044 # \Description # ========…
Tensorflow serving提供了部署tensorflow生成的模型给线上服务的方法,包括模型的export,load等等. 安装参考这个 https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/setup.md 但是由于被qiang的问题 (googlesource无法访问) https://github.com/tensorflow/serving/issues/6 需要修改一下 WORKS…
当前无论是学术界还是工业界,深度学习都受到极大的追捧,尤其是在Google开源深度学习平台TensorFlow之后,更是给深度学习火上浇油.目前在开源社区Github上所有开源项目中,TensorFlow最为活跃,从推出到现在,经历了几个版本的演进,可以说能够灵活高效地解决大量实际问题.本文主要尝试阐述TensorFlow在自然语言处理(NLP)领域的简单应用,让大家伙儿更加感性地认识TensorFlow. 说到NLP,其实我对它并不是很熟悉,之前也未曾有过NLP的相关经验,本文是我最近学习Te…
# 在 Linux 上: $ sudo apt-get install python-pip python-dev python-virtualenv $ virtualenv --system-site-packages ~/tensorflow $ cd ~/tensorflow $ source bin/activate # 如果使用 bash (tensorflow)$ # 终端提示符应该发生变化 (tensorflow)$ pip install --upgrade <$url_to_…
本博客主要用于在Ubuntu14.04 64bit 操作系统上搭建google开源的深度学习框架tensorflow. 0.安装CUDA和cuDNN 如果要安装GPU版本的tensorflow,就必须先安装CUDA和cuDNN,请参考Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本). 1.安装tensorflow github上下载已经编译好的.whl文件. 输入如下, sudo pip install tensorflow-0.8.0-cp27-non…