Boltzmann Machine 玻尔兹曼机入门】的更多相关文章

Generative Models 生成模型帮助我们生成新的item,而不只是存储和提取之前的item.Boltzmann Machine就是Generative Models的一种. Boltzmann Machine Boltzmann Machine和Hopfield Network对比 Energy Function是相同的 神经元\(x_i\)的取值在0和1之间,而不是Hopfield Network中的-1和1. 使用Boltzmann Machine来产生新的状态,而不是提取存储的…
受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}.整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元…
这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/restricted-boltzmann-machine/ 翻译如下: (注:下文中的"我"均指原作者) 受限玻尔兹曼机--简单的教程 我读过很多关于RBM的论文,但是要理解它所有的实现细节似乎有些难度. 因此我想和大家分享一些我在面对这些困难时收获的经验.我的教程是基于RBM的一个变种,…
假设有一个二部图,每一层的节点之间没有连接,一层是可视层,即输入数据是(v),一层是隐藏层(h),如果假设所有的节点都是随机二值变量节点(只能取0或者1值)同时假设全概率分布满足Boltzmann 分布,我们称这个模型是Restricted BoltzmannMachine (RBM). 首先,这个模型因为是二部图,所以在已知v的情况下,所有的隐藏节点之间是条件独立的(因为节点之间不存在连接),即p(h|v)=p(h1|v)…p(hn|v).同理,在已知隐藏层h的情况下,所有的可视节点都是条件独…
受限玻尔兹曼机(Restricted Boltzmann Machine) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 生成模型 2. 参数学习 3. 对比散度学习算法 由于受限玻尔兹曼机的特殊结构,因此可以使用一种比吉布斯采样更有效 的学习算法,即对比散度(Contrastive Divergence)对比散度算法仅需k步吉布斯采样.为了提高效率,对比散度算法用一个训练样本作为可观测向量的初始值.然后,交替对可观测向量和隐藏向量进行吉布…
Lecture 11 — Hopfield Nets Lecture 12 — Boltzmann machine learning Ref: 能量模型(EBM).限制波尔兹曼机(RBM) 高大上的模型和理论. Hopfield Nets 看了能量函数,发现: These look very much like the weights and biases of a neural network. [点到为止] Boltzmann machine learning From: A Beginne…
Hopfield网络具有最优计算功能,然而网络只能严格按照能量函数递减方式演化,很难避免伪状态的出现,且权值容易陷入局部极小值,无法收敛于全局最优解. 如果反馈神经网络的迭代过程不是那么死板,可以在一定程度上暂时接受能量函数变大的结果,就有可能跳出局部极小值.随机神经网络的核心思想就是在网络中加入概率因素,网络并不是确定的向能量函数减小的方向演化,而是以一个较大概率向这个方向演化,以保证正确的迭代方向,同时想能量函数增大的概率也存在,以防止陷入局部极小值. 在机器学习以及优化组合问题中,最常用的…
一.背景介绍 玻尔兹曼机 = 马尔科夫随机场 + 隐结点 二.RBM的Representation BM存在问题:inference 精确:untractable: 近似:计算量太大 因此为了使计算简便,引入了RBM,RBM假设h,v之间有连结,h,v内部无连结 从NB(朴素贝叶斯)推导到RBM的过程图  三.RBM的Inference 主要是已知learning求得参数之后,再来求后验概率P(h|v).P(v|h),以及边缘概率P(v)…
一.最近懒了 7月没怎么写博客,倒是一直在学Machine Learning的入门知识,在这里给大家推荐一个不错的自学网站:https://www.coursera.org/ ,Andrew Ng是联合创始人之一,感觉网站做的还不错,有视频授课内容,可以和全球正在上课的人一起在论坛里讨论,然后每周按时提交作业要求的代码. Coursa Machine Learning 主界面: Assignments Submission 页面 这里值得一提的是,coursa的论坛很高效,按课程/班次/周次/内…
一.最近懒了 7月没怎么写博客,倒是一直在学Machine Learning的入门知识,在这里给大家推荐一个不错的自学网站:https://www.coursera.org/ ,Andrew Ng是联合创始人之一,感觉网站做的还不错,有视频授课内容,可以和全球正在上课的人一起在论坛里讨论,然后每周按时提交作业要求的代码. Coursa Machine Learning 主界面: Assignments Submission 页面 这里值得一提的是,coursa的论坛很高效,按课程/班次/周次/内…