事件时间和水印诞生的背景 在实际的流式计算中数据到来的顺序对计算结果的正确性有至关重要的影响 比如:某数据源中的某些数据由于某种原因(如:网络原因,外部存储自身原因)会有2秒的延时,也就是在实际时间的第1秒产生的数据有可能在第3秒中产生的数据之后到来. 假设在一个5秒的滚动窗口中,有一个EventTime是 9秒的数据,在第11秒时候到来了. 图示: 那么对于一个Count聚合的Tumble(5s)的window,上面的情况如何处理才能window3=3,window2=3 呢? 时间类型 Fl…
3. 事件-时间(Event-Time)处理 在“时间语义”中,我们强调了在流处理应用中时间语义的重要性,并解释了处理时间与事件时间的不同点.处理时间较好理解,因为它基于本地机器的时间,它产生的是有点任意的.不一致的.以及无法复现的结果.而事件时间的语义产生的是可复现的.一致性的结果,它对于很多流处理场景是一个硬性的要求.然而,相对于处理时间语义,事件时间语义应用需要额外的配置,并且引入了更多的系统内部构件. Flink为常见的event-time处理操作提供了直观.并易于使用的原型.同时也提供…
使用flink-1.9.0进行的测试,在不同的并行度下,Flink对事件时间的处理逻辑不同.包括1.1在并行度为1的本地模式分析和1.2在多并行度的本地模式分析两部分.通过理论结合源码进行验证,得到具有说服力的结论. 一.使用并行度为1的本地模式测试 1.1.Flink时间时间窗口代码,使用SocketSource: package com.mengyao.flink.stream.window; import java.text.SimpleDateFormat; import java.ut…
生成Timestamp和Watermark 的三个重载方法介绍可参见上一篇博客: Flink assignAscendingTimestamps 生成水印的三个重载方法 之前想研究下Flink是怎么处理乱序的数据,看了相关的源码,加上测试,发现得到了与预期完全不相同的结果. 预期是:乱序到达的数据,flink可以基于数据的事件时间,自动整理数据,依次计算输出 结果是:在assignTimestampsAndWatermarks(assigner: AssignerWithPeriodicWate…
我们先来以滚动时间窗口为例,来看一下窗口的几个时间参数与Flink流处理系统时间特性的关系. 获取窗口开始时间Flink源代码 获取窗口的开始时间为以下代码: org.apache.flink.streaming.api.windowing.windows.TimeWindow /** * Method to get the window start for a timestamp. * * @param timestamp epoch millisecond to get the window…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
检查点,保存点,与状态恢复 Flink是一个分布式数据处理系统,这种场景下,它需要处理各种异常,例如进程终止.机器故障.网络中断等.因为tasks在本地维护它们的state,Flink必须确保在出现故障的情况下,state不会丢失,并且保持一致性. 在这一节,我们会介绍Flink用于保证exactly-once state 一致性的检查点与恢复机制.我们也会讨论Flink独特的保存点功能. 一致性检查点(consistent checkpoints) Flink的恢复机制基于应用状态的一致检查点…
序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能对别人有所帮助,善莫大焉. 说一下我的工作,在一个项目里我们在Flink-SQL基础上构建了一个SQL Engine, 使懂SQL非技术人员能够使用SQL代替程序员直接实现Application, 然后在此基础上在加上一些拖拽的界面,使不懂SQL非技术人员 利用拖拽实现批量或流式数据处理的Appli…
原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并利用过滤.关联.聚合等技术,最终有简单事件产生高级事件,并通过模式规则的方式对重要信息进行跟踪和分析,从实时数据中心发掘有价值的信息.复杂事件处理主要应用于防范网络欺诈.设备故障检测.风险规避和智能营销等领域.目前主流的CEP工具具有Esper,Jboss Drools和上夜班的MicroSoft…