numpy 其它常用方法】的更多相关文章

numpy教程 防止输出省略号 import numpy as np np.set_printoptions(threshold=np.inf) 广播机制 numpy计算函数返回默认是一维行向量: import numpy as np a = [[1,1,1], [2,2,2], [3,3,3]] b = (np.sum(a,axis=1)) c = (np.sum(a,axis=0)) print(b,'\n',c) # [3 6 9] # [6 6 6] 所以广播之实际是高维对一维行向量的广…
Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数.其整合C/C++.fortran代码的工具 ,更是Scipy.Pandas等的基础 .ndim :维度 .shape :各维度的尺度 (2,5) .size :元素的个数 10 .dtype :元素的类型 dtype(‘int32’) .itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 ndarray数组的创建 np.arange(n) ; 元素从0到n-1的ndarray类型 np.ones(…
一.创建特殊的数组 1.ones() 语法 np.ones(shape, dtype=None) # shape 创建数组的shape # dtype 指定数组的数据类型 例子 import numpy as np arr1 = np.ones((3, 4), dtype="int64") print(arr1) print(arr1.dtype) 2.zeros 语法 np.zeros(shape, dtype=None) # shape 创建数组的shape # dtype 指定数…
numpy 本文主要列出numpy模块常用方法 大部分内容来源于网络,而后经过自己的一点思考和总结,如果有侵权,请联系我 我是一名初学者,有哪些地方有错误请留言,我会及时更改的 创建矩阵(采用ndarray对象) 对于python中的numpy模块,一般用其提供的ndarray对象. 创建一个ndarray对象很简单,只要将一个list作为参数即可. 例如 import numpy as np #引入numpy库 #创建一维的narray对象 a = np.array([1,2,3,4,5])…
numpy创建矩阵常用方法 arange+reshape in: n = np.arange(0, 30, 2)# start at 0 count up by 2, stop before 30 n = n.reshape(3, 5) # reshape array to be 3x5 1 2 out: linspace+resize in: o = np.linspace(0, 4, 9) o.resize(3, 3) 1 2 out: notice:reshape与resize区别 one…
一.参数解释 ndarray = numpy.pad(array, pad_width, mode, **kwargs) array为要填补的数组 pad_width是在各维度的各个方向上想要填补的长度,如((1,2),(2,2)),表示在第一个维度上水平方向上padding=1,垂直方向上padding=2,在第二个维度上水平方向上padding=2,垂直方向上padding=2.如果直接输入一个整数,则说明各个维度和各个方向所填补的长度都一样. mode为填补类型,即怎样去填补,有“cons…
Python之Numpy基础   一个栗子 >>> import numpy as np >>> a = np.arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim # 数组轴的个数,在python的世界中,轴的个数被称…
Lambda 函数实现 简单的说,lambda 就是一个函数,但是这个函数没有名字,所以我们介绍一下这个函数的调用形式,参数与返回值的实现. lambda 的格式如下: lambda [arg1 [, agr2,.....argn]] : expression lambda x : expression 那么这个函数怎么使用了,它常常不是单独使用,单独的使用的时候可以较为简单,实现的功能过于简单.所以通常被使用的情况是,某个函数的参数是一个函数,那么这个参数就可以使用 lambda来实现. >>…
目录 Numpy 1.基本操作 1.1数组转换 1.2数组生成 1.3文件读取 1.4查看操作 2.数据类型 2.1指定数据类型: 2.2查看数据类型 2.3数据类型转换 3.数组运算 3.1数组间运算 3.2数组与标量 4.索引和切片 4.1基本索引和切片 4.2布尔型索引 4.3花式索引 5.数组转置和轴对换 6.数组函数 6.1通用函数:元素级数字函数 6.2where函数 6.3数学和统计方法 6.4排序方法 6.5集合运算函数 线性代数 Numpy 1.基本操作 1.1数组转换 创建数…
1.数组的拼接 import numpy as np t1 = np.array([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) t2 = np.array([[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]) print(np.vstack((t1, t2))) # 竖直拼接 print(np.hstack((t1, t2))) # 水平拼接 [[ 0 1 2 3 4 5] [ 6 7 8 9 10…