[PKUWC2018]Minimax [dp,线段树合并]】的更多相关文章

BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_a'\)表示\(f[y][a]\),\(P_i\)表示给定的\(i\)取最大值作为权值的概率. 转移就是两棵树之间的权值组合,即以\(x\)子树中的\(a\)作为最小值的概率为\(p_a\times\sum\limits_{v>a}p_v'\times(1-P_i)\),以\(x\)子树中的\(a\…
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子结点的个数 显然,\(i\) 出现 \(j\) 的概率为 \[f_{i,j} = f_{l,j} * (p_i \sum_{k=1}^{j-1}f_{r,k} + (1-p_i)\sum_{k=j+1}^{m}f_{r,k}) + f_{r,j} * (p_i \sum_{k=1}^{j-1}f_{…
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感觉已经很难做到比$O(n^2)$更优的复杂度了,但我们要看到题目里有什么条件没用上:每个节点最多有2个儿子. 这个提醒我们可以用启发式合并,据说splay可以做,但我们可以考虑一下线段树合并做法. 仍然采用上面的转移方程,这里线段树上的一个节点T[x]表示x表示的区间[L,R]最终成为当前子树的根的…
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小是大于当前权值的部分 然后考虑怎么优化 用线段树合并来做 每次向左递归的时候就把x右子树对y左子树的贡献加上,把y右子树对x左子树的贡献加上 每次向左递归的时候就把x左子树对y右子树的贡献加上,把y左子树对x右子树的贡献加上 考虑每个节点,左边的区间贡献一定会被统计完全,右边的区间贡献一定会被统计完…
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值.假设根节点\(1\)号节点的点权有\(m\)种可能性,其中权值第\(i\)小的可能点权是\(V_i\),可能性为\(D_i\),求\(\sum_{i=1}^mi\cdot V_i\cdot D_i^2\). 前言 好妙的题目,像我这种蒟蒻根本想不到线段树合并还可以这么玩. 同时,在无数个地方漏掉\(…
今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好了啊5555.... 场上$60pts$消失... 显然,我们可以用$f[i][j]$表示节点$i$值为第$j$大的值的概率. 我们不难列出$dp$式子,$f[i][j]=f[s1][j] \times (s[s2][j-1]\times p+(s[s2][m]-s[s2][j])\times (1…
正题 题目链接:https://www.luogu.com.cn/problem/P6847 题目大意 \(n\)个点的一棵树上,每个时刻可以割掉一些边,一些节点上有果实表示如果在\(d_i\)时刻这个点恰好不与\(1\)联通,那么就可以获得\(w_i\)的价值. \(1\leq n,k\leq 10^5\) 解题思路 设\(f_{x,i}\)表示节点\(x\)在时刻\(i\)之前割掉时的最大权值那么相当与在儿子里面选一个最大的\(f_{y,j}(j\leq i)\)合并上来. 这是一个很经典的…
题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不升的,那么我们可以维护他的差分数组(两个差分数组相加再求和 与 对两个原数组直接求和是一样的) 向上合并的过程中对\(a[x]\)处\(+1\),再找到\(a[x]\)之前为\(1\)的位置\(-1\)即可 (怎么感觉暴力区间加也可以qwq) 复杂度\(O(nlogn)\) // luogu-jud…
在 dp 问题中,如果发现可以用后缀最大值来进行转移的话可以考虑去查分这个后缀最大值. 这样的话可以用差分的方式来方便地进行维护 ~ #include <bits/stdc++.h> #define N 200007 #define ll long long #define lson t[x].ls #define rson t[x].rs #define setIO(s) freopen(s".in","r",stdin) using namespac…
传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$i$个点取到权值第$j$小的点的概率,转移就是$f_{i,j}=f_{lson,j} \times (\sum \limits _{k<i} f_{rson,k} \times p_x + \sum \limits _{k > i} f_{rson,k} \times (1 - p_x))$($l…
传送门 思路 首先有一个\(O(n^2)\)的简单DP:设\(dp_{x,w}\)为\(x\)的权值为\(w\)的概率. 假设\(w\)来自\(v1\)的子树,那么有 \[ dp_{x,w}=dp_{v1,w}\times (p\times \sum_{w'>w}dp_{v2,w'}+(1-p)\sum_{w'<w}dp_{v2,w'}) \] 其中\(p\)表示\(x\)选较小权值的概率. 由于每个点的状态数只有子树中的叶子个数,可以考虑线段树合并来优化这一DP过程. merge(k1,k2…
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入里给出,保证这类点中每个结点的权值互不相同. 2.若 \(x\) 有子结点,那么它的权值有 \(p_x\) 的概率是它的子结点的权值的最大值,有 \(1-p_x\) 的概率是它的子结点的权值的最小值. 现在小 \(C\) 想知道,假设 \(1\) 号结点的权值有 \(m\) 种可能性,权值第 \(i…
题目链接 loj2537 题解 观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率 先离散化一下权值 显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\)的概率 如果\(i\)是叶节点显然 如果\(i\)只有一个儿子直接继承即可 如果\(i\)有两个儿子,对于儿子\(x\),设另一个儿子为\(y\) 则有 \[f[i][j] += f[x][j](1 - p_i)\sum\limits_{k > j}f[r][k] + f[x][j]p_i\sum\…
题目链接: [NOI2018]情报中心 题目大意:给出一棵n个节点的树,边有非负边权,并给出m条链,对于每条链有一个代价,要求选出两条有公共边的链使两条链的并的边权和-两条链的代价和最大. 花了一天的时间,终于搞定了这道题,不可否认这真的是一道神题,对思维和代码能力的考察都非常到位. 通过手画或者数据范围的特殊性质都不难发现两条有公共边的链的$LCA$要么相同要么不同(这不废话吗?) 而两条链的并的计算方法也可以按照上面两种情况来分类计算,我们先分别讨论两种情况的计算方法再考虑如何一起考虑两种情…
洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置,的最小费用. 转移方程非常显然:每次把\(dp_x\)和\(dp_v\)合并时\(dp_{x,i}+=\min\{dp_v\},dp_{v,i}+=\min\{dp_x\}\),然后对应位置取\(\min\)即可. 显然这东西可以用线段树合并维护,就做完了. 然而这题卡空间,需要垃圾回收. 线段树合…
传送门 在最优的情况下,序列\(s_1,s_2,...,s_k\)中,\(s_i (i \in [2 , k])\)一定会是\(s_{i-1}\)的一个\(border\),即\(s_i\)同时是\(s_{i-1}\)的前缀和后缀,否则一定可以通过减去\(s_{i-1}\)的一个前缀和后缀使得满足条件. 对原串建立\(SAM\),因为有互为后缀的条件,所以\(s_1,s_2,...,s_k\)会对应\(parent\)树一条链上的若干状态. 发现可以在\(parent\)树上DP.设\(f_i\…
题目链接 \(Description\) 给定一个字符串\(s[1]\).一个字符串序列\(s[\ ]\)满足\(s[i]\)至少在\(s[i-1]\)中出现过两次(\(i\geq 2\)).求最大的\(k\),满足存在\(s[1]\sim s[k]\). \(|s[1]|\leq2\times10^5\). \(Solution\) 一开始以为直接自底向上合并right,如果|right|>1就继续向上.这显然不对啊,这样出现次数>1不一定是在之前的子节点中出现次数>1. 如果串\(A…
Description 给出一棵n个点的树,现在有m种颜色,要给每个节点染色,相邻节点不能同色. 另外有k条限制,形如x号点不能为颜色y 同一节点有可能有多条限制. 求方案数对998244353取模的结果. n<=200000,m<=1e9,k<=400000 Solution 考场上一直在想怎么容斥做,怎么都弄不出来. 学傻了. 考虑暴力DP 设\(f[i][j]\)为当前处理了以i为根的子树,i的颜色为j的方案数. 记\(g[i]=\sum\limits_{k}f[i][k]\) 显…
正题 题目链接:https://www.luogu.com.cn/problem/CF700E 题目大意 给出一个字符串\(S\),求一个最大的\(k\)使得存在\(k\)个字符串其中\(s_1\)是\(S\)的子串,\(s_{i+1}\)在\(s_i\)中出现了至少\(2\)次. 解题思路 首先我们需要有两个结论 \(s_{i+1}\)一定是\(s_i\)的其中一个后缀.因为如果\(s_{i+1}\)不是\(s_i\)的一个后缀,那么\(s_i\)去掉后面那一部分不会影响匹配数并且更短,也就是…
求所有可能联通块的第k大值的和,考虑枚举这个值: $ans=\sum\limits_{i=1}^{W}{i\sum\limits_{S}{[i是第K大]}}$ 设cnt[i]为连通块中值>=i的个数 $ans=\sum\limits_{i=1}^{W}{i\sum\limits_{S}{[cnt[i]>=K]-[cnt[i+1]>=K]}}$ $ans=\sum\limits_{i=1}^{W}{\sum\limits_{S}{[cnt[i]>=K]}}$ 于是先考虑树上dp,设f…
原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任意一个点y,设节点y代表的最长串为S,设节点x代表的串为T1,T2,T3,...,设 F(S,T) 表示串T在S中的出现次数,则 F(S,T1) = F(S,T2) = F(S,T3) = ... 证明:假设串 Ta 和 Tb 在 S 中的出现次数不同,且 |Ta|+1=|Tb| 则必然存在一个位置…
听说正解是啥 set启发式合并+维护凸包+二分 根本不会啊 , 只会 李超线段树合并 啦 ... 题意 给你一颗有 \(n\) 个点的树 , 每个节点有两个权值 \(a_i, b_i\) . 从 \(u\) 跳到 \(v\) 的代价是 \(a_u \times b_v\) . 你需要计算每个节点跳到叶子的最小代价 . \((n \le 10^5, -10^5 \le a_i, b_i \le 10^5)\) 题解 我们首先考虑一个很容易的 \(dp\) , 令 \(dp_i\) 为 \(i\)…
[BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等于儿子的权值. 首先离散权值. 考虑一个暴力\(dp\),设\(f[i][j]\)表示以\(i\)为根,子树中被选择的最小值为\(j\)时能够被选出的最大点树.然后xjb转移一下就写出了一个\(O(n^3)\)的优秀做法. 然后把状态从恰好变成至少,然后就得到了一个\(O(n^2)\)的做法. 考虑…
Description 给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1.问你给定字符串的最大价值子串的价值. Input 第一行读入字符串长度$n$,第二行是字符串. Output 一行答案. Sample Input1 3abc Sample Output1 1 Sample Input2 5ddddd Sample Output2 5 Sample Input3 11abracadabra Sample Output3 3 Solution 首先把后…
离散化后,容易想到设f[i][j]为i节点权值为j的概率,不妨设j权值在左子树,则有f[i][j]=f[lson][j](pi·f[rson][1~j]+(1-pi)·f[rson][j~m]). 考虑用线段树合并优化这个dp.记录前缀和,合并某节点时,若某棵线段树在该节点处为空,给另一棵线段树打上乘法标记即可.注意前缀和不要算成合并后的了. #include<iostream> #include<cstdio> #include<cmath> #include<…
4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 657  Solved: 274[Submit][Status][Discuss] Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱子拿到礼物,升职加薪,出任CEO,嫁给高富帅,走上人生巅峰.每…
题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少,寻找道路上的节点暴力添加. 而如果节点比较多,我们使用树上差分u+1,v+1,lca-1,fa[lca]-1向上求和就得到了答案 而颜色较多呢,和刚才唯一不同就在于向上求和时不要用数组,用线段树合并就好了(记录线段树区间的最大值与最大位置) 废点的回收是非常实用的^_^ 时间复杂度O(nlogn)…
RemoteJudge 又是一道用线段树合并来维护\(endpos\)的题,还有一道见我的博客CF666E 思路 先把\(SAM\)建出来 如果两个相邻的串\(s_i\)和\(s_{i+1}\)要满足\(s_i\)在\(s_{i+1}\)中至少出现了两次,那么\(s_i\)显然是\(s_{i+1}\)对应的结点在\(parent\ tree\)上的祖先,那么我们可以在\(parent\ tree\)上树形dp来得出答案 转移自顶向下进行,\(s_i\)在\(s_{i+1}\)中至少出现了两次意味…
地址:http://uoj.ac/contest/45 第一题是鸽子固定器. 只会10分.按 s 从小到大排序,然后 dp[ i ][ j ][ k ] 表示前 i 个元素.已经选了 j 个.最小值所在位置是 k 的最大代价. #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; int rdn() { ;;char ch=getc…
前言 已经是第三次遇到原题. 第一次是在 J O I 2021 S p r i n g C a m p \rm JOI2021~Spring~Camp JOI2021 Spring Camp 里遇到的类似的题(Food Court),我当初就用的启发式合并平衡树做法,但是由于常数不够优,没能通过 2 e 5 \tt2e5 2e5 的测试点.当时就只能用线段树合并做, O ( n log ⁡ n ) \rm O(n\log n) O(nlogn) ,但是我不会. 第二次是在打 C E O I 20…