1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5). 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升. 集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影. 2 集成学习概述 常见的集成学习思想有∶ Bag…
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过合并多个模型来提升机器学习性能,这种方法相较于当个单个模型通常能够获得更好的预测结果.这也是集成学习在众多高水平的比赛如奈飞比赛,KDD和Kaggle,被首先推荐使用的原因. 一般来说集成学习可以分为三大类: 用于减少方差的bagging 用于减少偏差的boosting 用于提升预测结果的stacking 集…
目的:为了让训练效果更好 bagging:是一种并行的算法,训练多个分类器,取最终结果的平均值 f(x) = 1/M∑fm(x) boosting: 是一种串行的算法,根据前一次的结果,进行加权来提高训练效果 stacking; 是一种堆叠算法,第一步使用多个算法求出结果,再将结果作为特征输入到下一个算法中训练出最终的预测结果 1.Bagging:全程boostap aggregation(说白了是并行训练一堆分类器) 最典型的算法就是随机森林 随机森林的意思就是特征随机抽取,即每一棵数使用60…
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 AdaBoost GBDT Xgboost 1.AdaBoost Boosting的本质实际上是一个加法模型,通过改变训练样本权重学习多个分类器并进行一些线性组合.而Adaboost就是加法模型+指数损失函数+前项分布算法.Adaboost就是从弱分类器出发反复训练,在其中不断调整数据权重或者是概率分布,同时提高前一轮被弱分类器…
作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升分类方法效果.严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法. 1.bagging bagging算是很基础的集成学习的方法,他的提出是为了增强分类器效果,但是在处理不平衡问题上却有很好的效果. 如上图,原始数据集通过T次随机采样,得到T个与原始数据集相同大小的子数据集,分别训练得到…
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分…
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Boosting -- Gradient Boosting实现 上一篇介绍了AdaBoost算法,AdaBoost每一轮基学习器训练过后都会更新样本权重,再训练下一个学习器,最后将所有的基学习器加权组合.AdaBoost使用的是指数损失,这个损失函数的缺点是对于异常点非常敏感,(关于各种损失函数可见之前…
目录 集成学习二: Boosting 引言 Adaboost Adaboost 算法 前向分步算法 前向分步算法 Boosting Tree 回归树 提升回归树 Gradient Boosting 参考文献: 集成学习二: Boosting 引言 集成学习,的第二种方式称为Boosting. 不同于bagging的民主投票制, 其采用的是"精英"投票制.也即不同的分类器具有不同的权重, 显然,分类效果好的分类器权重会更大些,反之,权重会小些. 这就是Boosting 的基本思想. 从偏…
集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boosting 可以看做是一个总体的算法框架,起始于Friedman 的论文 [Greedy Function Approximation: A Gradient Boosting Machine] .XGBoost (eXtreme Gradient Boosting) 是于2015年提出的一个新的 Gr…
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 AdaBoost的一般算法流程 输入: 训练数据集 \(T = \left \{(x_1,y_1), (x_2,y_2), \cdots (x_N,y_N)\right \}\),\(y\in\left\{-1,+1 \right\}\),基学习器\(G_m(x)\),训练轮数M 初始化权值分布: \(w_i^{(1)} = \frac{1}{N}\:, \;\;\;\; i=1,2,…