code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com   作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监督方法对海量KPI进行异常检测是我们在智能运维领域探索的方向之一.最近学习了清华裴丹团队发表在WWW 2018会议上提出利用VAE模型进行周期性KPI无监督异常检测的论文:<Unsupervised Anomaly Detection via Variational Auto-Encoder for…
我们都知道,很多业务系统都是基于 MVC 三层架构来开发的.实际上,更确切点讲,这是一种基于贫血模型的 MVC 三层架构开发模式. 虽然这种开发模式已经成为标准的 Web 项目的开发模式,但它却违反了面向对象编程风格,是一种彻彻底底的面向过程的编程风格,因此而被有些人称为反模式(anti-pattern).特别是领域驱动设计(Domain Driven Design,简称 DDD)盛行之后,这种基于贫血模型的传统的开发模式就更加被人诟病.而基于充血模型的 DDD 开发模式越来越被人提倡. 基于上…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
概览 CSS盒模型,规定了元素框来处理元素的 内容.内边距.边框和外边距的方式 元素部分是指内容部分,也是最实际的内容,包围内容的称之为内边距,内边距外围是边框,边框外围就是外边距:且外边距是透明的,所以并不会阻挡其后的元素 * { margin: 0; padding: 0; } 这是在CSS中最常见的初始化CSS的代码,用于覆盖浏览器的默认样式 浏览器兼容性 大多数浏览器都会按照上面的图示来呈现内容.然而 IE 5 和 6 的呈现却是不正确的.根据 W3C 的规范,元素内容占据的空间是由 w…
1. 为什么我们需要基于RBAC模型的通用企业权限管理系统 管理信息系统是一个复杂的人机交互系统,其中每个具体环节都可能受到安全威胁.构建强健的权限管理系统,保证管理信息系统的安全性是十分重要的.权限管理系统是管理信息系统中代码重用性最高的模块之一.任何多用户的系统都不可避免的涉及到相同的权限需求,都需要解决实体鉴别.数据保密性.数据完整性.抗否认和访问控制等安全服务(据ISO7498-2).例如,访问控制服务要求系统根据操作者已经设定的操作权限,控制操作者可以访问哪些资源,以及确定对资源如何进…
京东评论情感分类器(基于bag-of-words模型) 近期在本来在研究paraVector模型,想拿bag-of-words来做对照. 数据集是京东的评论,经过人工挑选,选出一批正面和负面的评论. 实验的数据量不大,340条正面,314条负面.我一般拿200正面和200负面做训练,剩下做測试. 做着做着,领悟了一些机器学习的道理.发现,对于不同的数据集,效果是不同的. 对于特定的数据集,随便拿来一套模型可能并不适用. 对于这些评论,我感觉就是bag-of-words模型靠谱点. 由于这些评论的…
基于雪花模型的维度以下面的 Product 产品与产品子类别,产品类别为例. DimProduct 表和 DimProductSubcategory 表有外键关系,而 DimProductSubcategory 表和 DimProductCategory 表存在外键关系. 测试的维度表与数据 - USE BIWORK_SSIS GO IF OBJECT_ID('DimProduct') IS NOT NULL DROP TABLE DimProduct GO IF OBJECT_ID('DimP…