引言 自然语言处理NLP(nature language processing),顾名思义,就是使用计算机对语言文字进行处理的相关技术以及应用.在对文本做数据分析时,我们一大半的时间都会花在文本预处理上,而中文和英文的预处理流程稍有不同,本文就对中.英文文本挖掘的常用的NLP的文本预处技术做一个总结. 文章内容主要按下图流程讲解: 1.中英文文本预处理的特点 中英文的文本预处理大体流程如上图,但是还是有部分区别.首先,中文文本是没有像英文的单词空格那样隔开的,因此不能直接像英文一样可以直接用最简…
Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重要性.在大数据的背景下,越来越多的非结构化半结构化文本.如何从海量文本中抽取我们需要的有价值的知识显得尤为重要.另外文本格式常常不一,诸如:pdf,word,excl,xml,ppt,txt等常见文件类型你或许经过一番周折还是有办法处理的.倘若遇到database,html,邮件,RTF,图像,语音…
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注NLP文本分类这类任务中的文本预处理工作,想总结一下自己的所学所想,老规矩,本博文记载仅供备忘与参考,不具备学术价值,本文默认使用python3编程(代码能力是屎山级别的,请谅解),默认文本为英文,代码主要使用Pytorch(博主老笨蛋了,之前一直执迷不悟用Keras,现在刚刚开始用torch,怎么说…
  Python自然语言处理入门 原文链接:http://python.jobbole.com/85094/ 分享到:20 本文由 伯乐在线 - Ree Ray 翻译,renlytime 校稿.未经许可,禁止转载!英文出处:Nitin Madnani.欢迎加入翻译组. 本文从概念和实际操作量方面,从零开始,介绍在Python中进行自然语言处理.文章较长,且是PDF格式. (作者案:本文是我最初发表在<ACM Crossroads>Volume 13,Issue 4 上的完整修订版.之所以修订是…
转 https://blog.csdn.net/hzp666/article/details/79373720     Python NLTK 自然语言处理入门与例程 在这篇文章中,我们将基于 Python 讨论自然语言处理(NLP).本教程将会使用 Python NLTK 库.NLTK 是一个当下流行的,用于自然语言处理的 Python 库. 那么 NLP 到底是什么?学习 NLP 能带来什么好处? 简单的说,自然语言处理( NLP )就是开发能够理解人类语言的应用程序和服务. 我们生活中经常…
1. 新手上路 自然语言处理(Natural Language Processing,NLP)是一门融合了计算机科学.人工智能及语言学的交叉学科,它们的关系如下图所示.这门学科研究的是如何通过机器学习等技术,让计算机学会处理人类语言,乃至实现终极目标--理解人类语言或人工智能. 美国计算机科学家Bill Manaris在<计算机进展>( Advances in Computers)第47卷的<从人机交互的角度看自然语言处理>一文中曾经给自然语言处理提出了如下的定义: "自…
前言 自然语言处理 ( Natural Language Processing, NLP) 是计算机科学领域与人工智能领域中的一个重要方向.它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,用于分析理解机器与人之间的交互,常用的领域有:实体识别.文本纠错.情感分析.文本分类.关键词提取.自动摘要提取等方面.本文将从分词.词频.词向量等基础领域开始讲解自然语言处理的原理,讲解 One-Hot.TF-IDF.PageRank 等算法及 LDA.LDiA.LSA 等语义分析的原理.介绍…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 3. 二元语法与中文分词 上一章中我们实现了块儿不准的词典分词,词典分词无法消歧.给定两种分词结果"商品 和服 务"以及"商品 和 服务",词典分词不知道哪种更加合理. 我们人类确知道第二种更加合理,只因为我们从小到大接触的都是第二种分词,出现的次数多,所以我们判定第二种是正确地选择.这就是利用了统计自然语言处理.统计自然语言处理的核心话题之一,就是…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 5. 感知机分类与序列标注 第4章我们利用隐马尔可夫模型实现了第一个基于序列标注的中文分词器,然而效果并不理想.事实上,隐马尔可夫模型假设人们说的话仅仅取决于一个隐藏的{B.M,E,S序列,这个假设太单纯了,不符合语言规律.语言不是由这么简单的标签序列生成,语言含有更多特征,而隐马弥可夫模型没有捕捉到.隐马弥可夫模型能捕捉的特征仅限于两种: 其一,前一个标签是什么:其二,当前字符…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…