【Weiss】【第04章】AVL树例程】的更多相关文章

普通的二叉搜索树可能会由于数据不平均.删除产生高度差等原因,使树倾向于不平衡生长,导致操作慢于O(NlogN). 为应对此现象,将搜索.删除.插入的最坏时间也控制在O(NlogN)上,产生了平衡二叉树的概念. 一颗平衡二叉树的递归定义是:它的左右子树高度相差不超过1,且左右子树也都是平衡二叉树. AVL树是最早被发明的平衡二叉树算法,通过每个节点维护高度信息,控制插入或删除时的高度差. 当某次操作后,左右子树的高度差大于或等于(一般是等于)2时,则通过一定的旋转操作使高度差恢复符合定义的状态.…
/* AVL树的节点声明 */ #ifndef _AVLTREE_H #define _AVLTREE_H struct AvlNode; typedef struct AvlNode *Position; typedef struct AvlNode *AvlTree; AvlTree MakeEmpty(AvlTree T); Position Find(ElementType X, AvlTree T); Position FindMin(AvlTree T); Position Find…
上次我们已经实现了普通的二叉查找树.利用二叉查找树,可以用O(logN)高度的树状结构存储和查找数据,提高了存储和查找的效率. 然而,考虑一种极端情形:依次插入1,2,3,4,5,6,7,8,9九个元素,形成的二叉查找树实际上是一个线性表,每层只有一个元素,元素数与层数相同. 事实上,不只这一种情形.在很多情况下,都有可能出现这种结构.这样一来,二叉查找树就失去了它存在的意义.于是,我们考虑在每次插入和删除元素时,对树的结构进行一些检查和维护,使其每层的元素数尽可能多,从而尽可能降低层数,我们称…
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++和Java版本的实现.建议:若您对"二叉查找树"不熟悉,建议先学完"二叉查找树"再来学习AVL树. 目录 1. AVL树的介绍2. AVL树的C实现3. AVL树的C实现(完整源码)4. AVL树的C测试程序 转载请注明出处:http://www.cnblogs.com…
概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实现(03) AVL树(三)之 Java的实现 AVL树的介绍 AVL树是…
AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用: 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为…
AVL树的介绍 AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1:而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1). AVL树的Java实现 1. 节点 1.1 节点定义 public class AVLTree<T extends Comparable<T>> { private AVLTree…
本文首发于我的公众号 Linux云计算网络(id: cloud_dev) ,专注于干货分享,号内有 10T 书籍和视频资源,后台回复 「1024」 即可领取,欢迎大家关注,二维码文末可以扫. 一.AVL树 AVL树是一种平衡查找树,在前面的两篇文章:二叉搜索树 和 红黑树 中都提到过.由于二叉搜索树在某些特殊情况下是不平衡的(任意一个结点深度过大),因此其一些动态集合操作在最坏情况下的时间复杂度为O(n).因此提出一些对二叉搜索树效率改进的树结构使最坏时间复杂度降为O(lgn),AVL树和红黑树…
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树:   对排序二叉树,若按中序遍历就可以得到由小到…