pytorch 简介 pytorch 是目前世界上最流行的两个机器学习框架的其中之一,与 tensoflow 并峙双雄.它提供了很多方便的功能,例如根据损失自动微分计算应该怎样调整参数,提供了一系列的数学函数封装,还提供了一系列现成的模型,以及把模型组合起来进行训练的框架.pytorch 的前身是 torch,基于 lua,而 pytorch 基于 python,虽然它基于 python 但底层完全由 c++ 编写,支持自动并列化计算和使用 GPU 加速运算,所以它的性能非常好. 传统的机器学习…
在之前的文章中我训练模型都是使用的 CPU,因为家中黄脸婆不允许我浪费钱买电脑.终于的,附近一个废品回收站的朋友转让给我一台破烂旧电脑,所以我现在可以体验使用 GPU 训练模型了…
每次看到大数据人脸识别抓逃犯的新闻我都会感叹技术发展的太快了,国家治安水平也越来越好了…
因为这几个月饭店生意恢复,加上研究 Faster-RCNN 用掉了很多时间,就没有更新博客了.这篇开始会介绍对象识别的模型与实现方法,首先会介绍最简单的 RCNN 与 Fast-RCNN 模型,下一篇会介绍 Faster-RCNN 模型,再下一篇会介绍 YOLO 模型. 图片分类与对象识别 在前面的文章中我们看到了如何使用 CNN 模型识别图片里面的物体是什么类型,或者识别图片中固定的文字 (即验证码),因为模型会把整个图片当作输入并输出固定的结果,所以图片中只能有一个主要的物体或者固定数量的文…
这篇将会介绍目前最流行的对象识别模型 YOLO,YOLO 的特征是快,识别速度非常快…
递归模型的应用场景 在前面的文章中我们看到的多层线性模型能处理的输入数量是固定的,如果一个模型能接收两个输入那么你就不能给它传一个或者三个.而有时候我们需要根据数量不一定的输入来预测输出,例如文本就是数量不一定的输入,"这部片非常好看" 有 7 个字,"这部片很无聊" 有 6 个字,如果我们想根据文本判断是正面评价还是负面评价,那么就需要使用支持不定长度 (即可以接收 6 个又可以接收 7 个) 输入的模型.时序性的数据数量也是不一定的,例如一个运动中的球,从某个时…
这一篇将会介绍什么是双向递归模型和如何使用双向递归模型实现根据上下文补全句子中的单词. 双向递归模型 到这里为止我们看到的例子都是按原有顺序把输入传给递归模型的,例如传递第一天股价会返回根据第一天股价预测的涨跌,再传递第二天股价会返回根据第一天股价和第二天股价预测的涨跌,以此类推,这样的模型也称单向递归模型.如果我们要根据句子的一部分预测下一个单词,可以像下图这样做,这时 天气 会根据 今天 计算, 很好 会根据 今天 和 天气 计算: 那么如果想要预测在句子中间的单词呢?例如给出 今天 和 很…
这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前,我们先来看看怎样使用 Python 处理图片.Python 处理图片最主要使用的类库是 Pillow (Python2 PIL 的 fork),使用以下命令即可安装: pip3 install Pillow 一些简单操作的例子如下,如果你想了解更多可以参考 Pillow 的文档: # 打开图片 >>…
写给嵌入式程序员的循环冗余校验(CRC)算法入门引导 http://blog.csdn.net/liyuanbhu/article/details/7882789 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌入式软件开发中,经常要用到CRC 算法对各种数据进行校验.因此,掌握基本的CRC算法应是嵌入式程序员的基本技能.可是,我认识的嵌入式程序员中能真正掌握CRC算法的人却很少,平常在项目中见到的CRC的代码多数都是那种效率非常低下的实现方式. 其实,在网上有一篇介绍CRC…
本GitHub教程旨在能够帮助大家快速入门学习使用GitHub. 本文章由做全栈攻城狮-写代码也要读书,爱全栈,更爱生活.原创.如有转载,请注明出处. GitHub是什么? GitHub首先是个分布式的版本控制库.通过使用git,可以方便的记录代码版本. 因国内外大量著名的项目,都开始搬迁到github.它又可以称为开源代码社区. github还是学习的好地方,学习优秀的代码. 可对其他项目中有bug的地方进行改进提交,集合众人的力量促进软件的优化改善. github何其火热,截至2015年2月…