adaboost 基于错误提升分类器】的更多相关文章

引自(机器学习实战) 简单概念 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们需要简单介绍几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%.其实任意的分类器都可以做为弱分类器,比如之前介绍的KNN.决策树.Naïve Bayes.logiostic回归和SVM都可以.这里我们采用的弱分类器是单层决策树,它是一个单节点的决策树.它是adaboost中最流行的弱分类器,当然并非唯一可用的弱分类器.即从特征中选择一个特征来进行分类,该…
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了.1        算法要点Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联:Haar分类器算法的要点如下:a)        使用Haar-like特征做检测.b)       使用积分图(Inte…
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 H…
已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部是离散型的,有全部是连续型的,也有离散与连续混合型的.通过对各个数据集的浏览,总结出各个数据集的一些基本信息如下: 连续型数据集: 1. diabets(4:8d-2c) 2. mozilla4(6:5d-2c) 3. pc1(7:21d-2c) 4. pc5(8:38d-2c) 5. wavefo…
开始挑战第十八关(Header Injection - Uagent field - Error based) 常见的HTTP注入点产生位置为[Referer].[X-Forwarded-For].[Cookie].[X-Real-IP].[Accept-Language].[Authorization]: (1)HTTP Referer是header的一部分,当浏览器向web服务器发送请求的时候,一般会带上Referer,告诉服务器我是从哪个页面链接过来的,服务器基此可以获得一些信息用于处理.…
这个不是基于错误的吧,看源码可以知道错误并没有输出 那就使用;%00和order by试一下 http://192.168.136.128/sqli-labs-master/Less-28/?id=1')%a0order%a0by%a03;%00 http://192.168.136.128/sqli-labs-master/Less-28/?id=1')%a0order%a0by%a04;%00 http://192.168.136.128/sqli-labs-master/Less-28/?…
这是一个重置密码界面,查看源码可以看到username作了防注入处理 逻辑是先通过用户名查出数据,在进行密码的update操作 所以要先知道用户名,实际情况中可以注册用户然后实行攻击,这里先用admin演示 这和前几个less都不一样,并不能 通过union select进行查询其他数据,但是由于update语句的出错信息没有被屏蔽,所以可以基于错误进行注入. 收集了一下,有两个方法可以实行注入取出数据,构造类似双注入的查询报错和使用updatexml函数进行报错 双注入构造下面的SQL语句执行…
1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树. Adaboost算法可以简述为三个步骤: (1)首先,是初始化训练数据的权值分布D1.假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N. (2)然后,训练弱分类器hi.具体训练过程中是:如果某个训练样本点,被弱分类器h…
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统…
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统…