单源最短路径(3):SPFA 算法】的更多相关文章

做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必然是从i到k的最短路径.Dijkstra是以最短路径长度递增,逐次生成最短路径的算法.比如:对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+cost[i][j]}.如…
单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负权 稳定 Dijkstra算法的解决方案 Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法.既先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止. Dijkstra算法的解题思想 将图G…
有关概念: 最短路问题:若在图中的每一条边都有对应的权值,求从一点到另一点之间权值和最小的路径 SPFA算法的功能是求固定起点到图中其余各点的的最短路(单源最短路径) 约定:图中不存在负权环,用邻接表存储有向图,di存放从起点到结点i的最短路,q为队列,保存待处理节点 思路: 首先指定起点入队,取当前队头结点u,沿每一条与u相连的边向外扩展,对该边所指向的结点v松弛(比较当前dv与当前du加此边长,更新最短路值dv,以及最短路径prev)如果v不在队列中且更新了最短路值,v进队,直至队列中没有元…
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到各顶点的最短路径的算法思想是:对有n个顶点的有向连通网络G=(V, E),首先从V中取出源点u0放入最短路径顶点集合U中,这时的最短路径网络S=({u0}, {}); 然后从uU和vV-U中找一条代价最小的边(u*, v*)加入到S中去,此时S=({u0, v*}, {(u0, v*)}).每…
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意顶点间的最短路径. 对于单源最短路径问题,一般有两种经典解法:1.对于有权值为负的图,采用Bellman-Ford算法:2.对于权值全为正的图,常采用Dijkstra算法.本文介绍Bellman-Ford算法,下一篇介绍Dijkstra算法. Bellman-Ford算法适用于权值可以为负.无权值为…
前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然,也可以输出这条路径,都不是难事. 但是,Dijkstra不能处理有负权边的图. 解析 注:接下来,我们的源点均默认为1. 先上代码(注意,是堆优化过的!!): struct node{ int id; int total; node(){}; node(int Id,int Total){ id=…
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最短路径的模板,有两种做法: 1.Floyd算法 暴力枚举出所有起点.终点以及中间值,然后算出每两个点间的最小值. 但这个算法时间复杂度较高,是O(n^3),很容易爆掉,在这道题甚至拿不到分. 代码: 1 #include<bits/stdc++.h> 2 using namespace std;…
spfa的算法思想(动态逼近法):     设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾.这样不断从队列中取出结点来进行松弛操作,直至队列空为止.       松弛操作的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式.所谓对结点i,j进行松弛,就是判定是否dis[j]>dis[i]+w[i,j],如…
同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历,在第次迭代中挑出未遍历的最小的边,一种信心的应用 ===================================== dijkstra算法是求带权单顶点到其他顶点的最短路径问题 表初始化 void InitTable(Vertex Start, Graph G, Table T) { in…
1.算法标签 BFS 2.算法概念 Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的.因此Bellman-Ford算法的思想如下,进行N次循环,在第 k 次循环中用dist数组记录 k 步之内到达各个顶点的最短路径长度,记做distk,然后在第k+1次循环中,遍历每条边,若有dist[v]>dist[u]+cost[u][v],则更新distk+1[v]=dist[u]+cost[u][v]…