学习适应结构化输出空间进行语义分割 在语义分割场景中,虽然物体在外表上不同,但是他们的输出是结构化且共享很多例如空间分布, 局部内容等信息.所以作者提出了multi-level的输出空间adaptation. 本文提出一种在未知领域强化source领域知识的finetune,作者观察到分割效果不好的痛点 (例如源领域是天气好的图片,目标领域是下雨天气,预测下雨天气分割时,对于车子这些原有领域 已知的目标,我们要强化它的分割效果). 作者主要做了两组实验,在虚拟数据集如GTA5等训练,然后在真实数…
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的. 引言部分…
Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http://openaccess.thecvf.com/content_ECCV_2018/papers/Xuecheng_Nie_Mutual_Learning_to_ECCV_2018_paper.pdf Code: https://github.com/NieXC/pytorch-mula Rela…
reference: Struck: Structured Output Tracking with Kernels hot topic: tracking-by-detection methods, treated as a classifiction task, use online learning techniques to update the object model questions: 1) for these updates to happen one needs to con…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…
In this post, I review the literature on semantic segmentation. Most research on semantic segmentation use natural/real world image datasets. Although the results are not directly applicable to medical images, I review these papers because research o…
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 channel attention 来挑选出最具有识别力的特征 3.迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据 目标数据集: landsat-8 和 ISPRS Vaihingen Challenge Dataset 语义分割现代技术: 1.global context(全局上下文信息):如…
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet part数据集 (3)语义分割/检测 2.网络结构分析 (1)针对无序性的解决方法比较 (2)输入和特征对齐的有效性验证 (3)鲁棒性测试(数据缺失.异常值.点扰动) 3.可视化(解释为什么鲁棒性) 4.时间和空间复杂度分析 六.仍存在的问题 七.代码分析 PointNet: Deep Learn…
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method 作者声明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:https://www.cnblogs.com/phoenixash/p/15371354.ht…
Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法. 在传统的GAN网络中,discriminator大多是用来进行输入图像的真伪分类(Datasets里面sample的图片打高分,generator产生的图片打低分),而本文设计了一种全卷积的discriminator,用于区分输入标签图中各个像素(pixel-wise)的分类结果是ground…