Spark Streaming揭秘 Day14 State状态管理 今天让我们进入下SparkStreaming的一个非常好用的功能,也就State相关的操作.State是SparkStreaming中用来管理历史数据的结构.目前主要提供了updateStateByKey和MapWithStateRDD两个方法. updateStateByKey 首先,让我们先找一下这个方法的位置. 我们可以发现updateStateByKey这个方法并不在DStream中,而是在PairDStreamFunc…
Spark Streaming揭秘 Day13 数据安全容错(Driver篇) 书接上回,首先我们要考虑的是在Driver层面,有哪些东西需要维持状态,只有在需要维持状态的情况下才需要容错,总的来说,一共有三个组件需要容错: 数据层面:ReceiverBlockTracker,专门负责管理整个SparkStreaming运行数据的元数据,主要用来跟踪数据,需要状态. 逻辑层面:DStream和DStreamGraph,表达依赖关系,在恢复的时候需要恢复计算逻辑级别的依赖关系. 作业生成层面:Jo…
Spark Streaming揭秘 Day33 checkpoint的使用 今天谈下sparkstreaming中,另外一个至关重要的内容Checkpoint. 首先,我们会看下checkpoint的使用.另外,会看下在应用程序重新启动时,是如何处理checkpoint的. Checkpoint保存什么 checkpoint作为容错的设计,基本思路是把当前运行的状态,保存在容错的存储系统中(一般是hdfs).对于容错的处理,肯定是围绕作业紧密相关的,保存内容包括元数据和数据两部分. 从元数据角度…
Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是JobScheduler的启动. StreamingContext启动 我们首先看下start方法的上半部分. 首先进行模式匹配,这是一个标准的条件判断,默认是INITIALIZED状态. 这里有三个关键部分: validate方法,会进行一些前置条件的判断.其中比较关键的是对DStreamGraph进…
Spark Streaming揭秘 Day19 架构设计和运行机制 今天主要讨论一些SparkStreaming设计的关键点,也算做个小结. DStream设计 首先我们可以进行一个简单的理解:DStream就是加上时间维度的RDD.RDD的模板是DStream,DAG的模板是DStreamGraph,RDD的依赖关系就是DStream的依赖关系. 但是,从DStream的设计来看,我们会发现,DStream的操作和RDD并不是一一对应的,DStream并不直接支持join.orderBy等操作…
Spark Streaming揭秘 Day6 关于SparkStreaming Job的一些思考 Job是SparkStreaming的重要基础,今天让我们深入,进行一些思考. Job是什么? 首先,有个挺重要的概念要区分下,就是SparkStreaming中的Job和Spark core的Job并不相同,可以认为SparkStreaming中的Job是一个应用程序,不同于Spark core中的Job. 从Job的的定义来看,类似于一个Java Bean,核心是其run方法,相当于Java中线…
Spark Streaming揭秘 Day5 初步贯通源码 引子 今天,让我们从Spark Streaming最重要的三个环节出发,让我们通过走读,逐步贯通源码,还记得Day1提到的三个谜团么,让我们开始解密吧. 1.创建StreamingContext StreamingContext是Spark Streaming是运行基础,也是负责管理和其运行的重要组件. 我们需要特别注意下面这段代码: 可以看到,StreamingContext内部包涵了一个SparkContext,这个可以告诉我们St…
Spark Streaming揭秘 Day4 事务一致性Exactly one 引子 对于业务处理系统,事务的一致性非常的关键,事务一致性(Exactly one),简单来说,就是输入数据一定会被处理,且只会被处理一次.下面来研究下Spark Streaming是如何做到这点的.我想说的是,Spark Streaming是一个非常优秀的软件,通过对它的研究,能对我们在类似领域的其他软件工作有所借鉴. 1.总体机制 从整个Spark Streaming的整体处理流程来分析,在上节已经介绍了,数据管…
Spark Streaming揭秘 Day35 Spark core思考 Spark上的子框架,都是后来加上去的.都是在Spark core上完成的,所有框架一切的实现最终还是由Spark core来做的.抛开任何具体的东西,现在考虑下Spark core是个什么东西. 解析rdd 程序就是数据+代码.所以首先,我们需要考虑spark core由什么数据结构构成,一共就三种:rdd,broadcast,accumulator,最重要.最核心的是rdd. rdd可以简单的认为是一个数组,只不过是一…
Spark Streaming揭秘 Day32 WAL框架及实现 今天会聚焦于SparkStreaming中非常重要的数据安全机制WAL(预写日志). 设计要点 从本质点说,WAL框架是一个存储系统,可以简单的认为是一个文件系统,其作用类似于BlockManager, 我们首先看一下官方的说明: 这里有三个要点: 总体上,sparksteaming是用WAL去保存接收到的数据,并且在写入数据后,要把元数据汇报给Driver,这样失败了才能恢复起来. 每当写入一个log,就返回一个handle,h…