map-reduce任务的执行流程】的更多相关文章

前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行? Map/Reduce 任务执行总流程 经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为: 代码编写  -->  作业配置  -->  作业提交  -->  Map任务的分配和执行  -->  处理中间结果(Shuffle)  --&…
前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行? Map/Reduce 任务执行总流程 经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为: 代码编写  -->  作业配置  -->  作业提交  -->  Map任务的分配和执行  -->  处理中间结果(Shuffle)  --&…
背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, 具体阐述下生成测试数据集的Map/Reduce程序该如何写? 场景构造: 假设某移动电信行业的某具体业务, 其记录了通话信息(包括拨打方/接听方/通话时间点/基站 等要素). 产商是不可能提供真实的用户数据用于测试的, 但提供了基本的数据格式. 具体针对该业务场景, 我们简单规划如下: num1 v…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射,函数将使用该映射对一系列键值对进行处理,直接产生出一系列键值对. Map Reduce和流处理 Hadoop的Map / Reduce模型在并行处理大量数据方面非常出色.它提供了一个通用的分区机制(基于数据的关键)来分配不同机器上的聚合式工作负载.基本上, map / reduce的算法设计都是关…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
Map/Reduce 这部分文档为用户将会面临的Map/Reduce框架中的各个环节提供了适当的细节.这应该会帮助用户更细粒度地去实现.配置和调优作业.然而,请注意每个类/接口的javadoc文档提供最全面的文档:本文只是想起到指南的作用. 我们会先看看Mapper和Reducer接口.应用程序通常会通过提供map和reduce方法来实现它们. 然后,我们会讨论其他的核心接口,其中包括: JobConf,JobClient,Partitioner, OutputCollector,Reporte…
Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解Mapper和Reducer接口,应用通常须要提供map和reduce方法以实现他们. 接着我们须要对JobConf, JobClient,Partitioner,OutputCollector,Reporter,InputFormat,OutputFormat,OutputCommitter等进行讨…
在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child类中的Main方法,这个方法是如何执行的. 1,从命令参数中解析相应参数,获取JVMID.建立RPC连接.启动日志线程等初始化操作: 父进程(即TaskTracker)在启动子进程时,会加入一些参数,如本机的IP.端口.TaskAttemptID等等,通过解析可以得到JVMID. String ho…
随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义InputFormat实现. InputFormat 类是Hadoop Map Reduce框架中的基础类之一.该类主要用来定义两件事情: 数据分割(Data splits) 记录读取器(Record reader) 数据分割 是Hadoop Map Reduce框架中的基础概念之一,它定义了单个Map任…
最近在做报表统计,跑hadoop任务. 之前也跑过map/reduce但是数据量不大,遇到某些map/reduce执行时间特别长的问题. 执行时间长有几种可能性: 1. 单个map/reduce任务处理的任务大. 需要注意每个任务的数据处理量大小不至于偏差太大.可以切割部分大文件. 2. map数量过多, reduce拉取各方数据慢 这种情况,可以在中间加一轮map过程A. 即map -> mapA - > reduce,来减少reduce拉取数据的源头的个数. 3. 遇到了执行慢节点 had…