论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:https://arxiv.org/abs/1704.06857_ 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. 论文地址:https://arxiv.org/abs/1704.06857 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深度学…
论文地址:深度噪声抑制模型的性能优化 引用格式:Chee J, Braun S, Gopal V, et al. Performance optimizations on deep noise suppression models[J]. arXiv preprint arXiv:2110.0437…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting noncoding variants- 非常好的学习资料 这篇文章的第一个亮点就是直接从序列开始分析,第二就是使用深度学习获得了很好的预测效果. This is, to our knowledge, the first approach for prioritization of functional…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
论文地址:一种低复杂度实时增强全频带语音的感知激励方法 论文代码 引用格式:A Perceptually Motivated Approach for Low-complexity, Real-time Enhancement of Fullband Speech 摘要 近几年来,基于深度学习的语音增强方法大大超过了传统的基于谱减法和谱估计的语音增强方法.许多新技术直接在短时傅立叶变换(STFT)域中操作,导致了很高的计算复杂度.在这项工作中,我们提出了PercepNet,这是一种高效的方法,它…